Orexins (OX) and their receptors (OXR) modulate feeding, arousal, stress, and drug abuse. Neural systems that motivate and reinforce drug abuse may also underlie compulsive food seeking and intake. Therefore, the effects of GSK1059865, a dual OX 1 /OX 2 R antagonist were evaluated in a binge eating (BE) model in female rats. BE of highly palatable food (HPF) was evoked by three cycles of food restriction followed by stress, elicited by exposing rats to HPF, but preventing them from having access to it for 15 min. Pharmacokinetic assessments of all compounds were obtained under the same experimental conditions used for the behavioral experiments. Topiramate was used as the reference compound as it selectively blocks BE in rats and humans. Dose-related thresholds for sleep-inducing effects of the OXR antagonists were measured using polysomnography in parallel experiments. SB-649868 and GSK1059865, but not JNJ-10397049, selectively reduced BE for HPF without affecting standard food pellet intake, at doses that did not induce sleep. These results indicate, for the first time, a major role of OX 1 R mechanisms in BE, suggesting that selective antagonism at OX 1 R could represent a novel pharmacological treatment for BE and possibly other eating disorders with a compulsive component.
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complex-mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.
Ghrelin is a 28-amino-acid polypeptide expressed in the stomach and hypothalamus that stimulates GH secretion, increases food intake (FI) and promotes body weight (BW) gain most likely via activation of the growth hormone secretagogue receptor type 1a (GHSR1a). GSK1614343 is a novel selective and potent GHSR antagonist with no partial agonist properties, recently characterized as GH secretion inhibitor by Sabbatini et al. [Chem Med Chem 2010;5:1450–1455]. In the present study, GSK1614343 (10 mg/kg) was not able to antagonize ghrelin-induced food consumption in rat, but unexpectedly stimulated FI and BW gain in both rats and dogs, a profile associated with decreased ghrelin plasma level. Interestingly, GSK1614343 selectively reduced the pro-opiomelanocortin mRNA levels in rat hypothalami chronically treated with the compound. To better understand the observed effects, we administered GSK1614343 (30 mg/kg) to Ghsr null mice and measured body mass components (fat, lean and free fluid) by using a NMR spectrometer. The increases of FI and BW were abolished in Ghsr null mice, while fat and lean masses increased in wild-type mice. Taken together, these results indicate that the orexigenic effect of GSK1614343 is mediated by GHSR1a and that the weight gain could be attributed to the increase of both adiposity and muscle mass, but not to fluid retention. The observed dissociation between effects on GH secretion and effects on FI/BW is inconsistent with a simple hormone-receptor model, suggesting unknown underlying regulations of the ghrelin system whose understanding require further investigation.
Response strategy in the dual-solution plus maze is regarded as a form of stimulus-response learning. In this study, by using an outcome devaluation procedure, we show that it can be based on both action-outcome and stimulus-response habit learning, depending on the amount of training that the animals receive. Furthermore, we show that deactivation of the dorsomedial and the dorso-lateral striatum with Botulinum neurotoxin A, mimicked or abolished, respectively, the effects of practice on the sensitivity of the response strategy to outcome devaluation. These findings have relevant implications for the understanding of the learning mechanisms underlying different overt behaviors in this widely used maze task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.