This study addresses the optimization of the location of a radioactive-particle sensor on a drone. Based on the analysis of the physical process and of the boundary conditions introduced in the model, computational fluid dynamics simulations were performed to analyze how the turbulence caused by drone propellers may influence the response of the sensors. Our initial focus was the detection of a small amount of radioactivity, such as that associated with a release of medical waste. Drones equipped with selective low-cost sensors could be quickly sent to dangerous areas that first responders might not have access to and be able to assess the level of danger in a few seconds, providing details about the source terms to Radiological-Nuclear (RN) advisors and decision-makers. Our ultimate application is the simulation of complex scenarios where fluid-dynamic instabilities are combined with elevated levels of radioactivity, as was the case during the Chernobyl and Fukushima nuclear power plant accidents. In similar circumstances, accurate mapping of the radioactive plume would provide invaluable input-data for the mathematical models that can predict the dispersion of radioactivity in time and space. This information could be used as input for predictive models and decision support systems (DSS) to get a full situational awareness. In particular, these models may be used either to guide the safe intervention of first responders or the later need to evacuate affected regions.
The risk associated with chemical, biological, radiological, nuclear, and explosive (CBRNe) threats in the last two decades has grown as a result of easier access to hazardous materials and agents, potentially increasing the chance for dangerous events. Consequently, early detection of a threat following a CBRNe event is a mandatory requirement for the safety and security of human operators involved in the management of the emergency. Drones are nowadays one of the most advanced and versatile tools available, and they have proven to be successfully used in many different application fields. The use of drones equipped with inexpensive and selective detectors could be both a solution to improve the early detection of threats and, at the same time, a solution for human operators to prevent dangerous situations. To maximize the drone’s capability of detecting dangerous volatile substances, fluid dynamics numerical simulations may be used to understand the optimal configuration of the detectors positioned on the drone. This study serves as a first step to investigate how the fluid dynamics of the drone propeller flow and the different sensors position on-board could affect the conditioning and acquisition of data. The first consequence of this approach may lead to optimizing the position of the detectors on the drone based not only on the specific technology of the sensor, but also on the type of chemical agent dispersed in the environment, eventually allowing to define a technological solution to enhance the detection process and ensure the safety and security of first responders.
Conventional and non-conventional emergencies are among the most important safety and security concerns of the new millennium. Nuclear power and research plants, high-energy particle accelerators, radioactive substances for industrial and medical uses are all considered credible sources of threats both in warfare and in terror scenarios. Estimates of potential radiation releases of radioactive contamination related to these threats are therefore essential in order to prepare and respond to such scenarios. The goal of this paper is to demonstrate that computational modeling codes to simulate transport of radioactivity are extremely valuable to assess expected radiation levels and to improve risk analysis during emergencies helping the emergency planner and the first responders in the first hours of an occurring emergency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.