In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in nonsaturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. The impact of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, especially in an environment of high interference.We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station. Finally, we derive a linear model of the throughput along with its interval of validity.Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.
In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in nonsaturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, specially in an environment of high interference.We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station.
Abstract-The aim of this paper is twofold. On one hand, it presents a multi-dimensional Markovian state transition model characterizing the behavior at the Medium Access Control (MAC) layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the queue of a station (to model non-saturated traffic conditions). On the other hand, it provides a throughput analysis of the IEEE 802.11 protocol at the data link layer in both saturated and non-saturated traffic conditions taking into account the impact of both transmission channel and multirate transmission in Rayleigh fading environment. Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.