This work investigates the possibility of performing target analysis through the Multi-Chromatic Analysis (MCA), a technique that basically explores the information content of sub-band images obtained by processing portions of the range spectrum of a synthetic aperture radar (SAR) image. According to the behavior of the SAR signal at the different sub-bands, MCA allows target classification. Two strategies have been experimented by processing TerraSAR-X images acquired over the Venice Lagoon, Italy: one exploiting the phase of interferometric sub-band pairs, the other using the spectral coherence derived by computing the coherence between sub-band images of a single SAR acquisition. The first approach introduces the concept of frequency-persistent scatterers (FPS), which is complementary to that of the time-persistent scatterers (PS). FPS and PS populations have been derived and analyzed to evaluate the respective characteristics and the physical nature of the targets. Spectral coherence analysis has been applied to vessel detection, according to the property that, in presence of a random distribution of surface scatterers, as for open sea surfaces, spectral coherence is expected to be proportional to sub-band intersection, while in presence of manmade structures it is preserved anyhow. First results show that spectral coherence is well preserved even for very small vessels, and can be used as a complementary information channel to constrain
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.