Purpose: To evaluate feasibility, toxicities, and clinical response in Stage IV patients treated with palliative “metabolism-guided” lattice technique. Patients and Methods: From June 2020 to December 2021, 30 consecutive clinical stage IV patients with 31 bulky lesions were included in this study. All patients received palliative irradiation consisting of a spatially fractionated high radiation dose delivered in spherical deposits (vertices, Vs) within the bulky disease. The Vs were placed at the edges of tumor areas with different metabolisms at the PET exam following a non-geometric arrangement. Precisely, the Vs overlapped the interfaces between the tumor areas of higher 18F-FDG uptake (>75% SUV max) and areas with lower 18F-FDG uptake. A median dose of 15 Gy/1 fraction (range 10–27 Gy in 1/3 fractions) was delivered to the Vs. Within 7 days after the Vs boost, all the gross tumor volume (GTV) was homogeneously treated with hypo-fractionated radiation therapy (RT). Results: The rate of symptomatic response was 100%, and it was observed immediately after lattice RT delivery in 3/30 patients, while 27/30 patients had a symptomatic response within 8 days from the end of GTV irradiation. Radiation-related acute grade ≥1 toxicities were observed in 6/30 (20%) patients. The rate of overall clinical response was 89%, including 23% of complete remission. The 1-year overall survival rate was 86.4%. Conclusions: “Metabolism-guided” lattice radiotherapy is feasible and well-tolerated, being able to yield very impressive results both in terms of symptom relief and overall clinical response rate in stage IV bulky disease patients. These preliminary results seem to indicate that this kind of therapy could emerge as the best therapeutic option for this patient setting.
Expiratory CT scan is usually obtained as supplement to normal inspiratory CT scan to recognize air-trapping, which is expression of small airways obstruction. In some patients the air-trapping may be the only sign of an early-stage small airways disease in an otherwise normal lung. The purpose of this article is to illustrate pathologic conditions, namely obliterative bronchiolitis, in which expiratory CT scan can be abnormal despite normal inspiratory CT examination, and to highlight indications for this technique in patients with clinical and functional suspect of bronchiolar obstruction.
Background: 18F-FDG PET/CT imaging represents the most important functional imaging method in oncology. European Society of Medical Oncology and the National Comprehensive Cancer Network guidelines defined a crucial role of 18F-FDG PET/CT imaging for local/locally advanced breast cancer. The application of artificial intelligence on PET images might potentially contributes in the field of precision medicine. Objective: This review aims to summarize the clinical indications and limitations of PET imaging for comprehensive artificial intelligence in relation to breast cancer subtype, hormone receptor status, proliferation rate, and lymphonodal (LN)/distant metastatic spread, based on recent literature. Methods: A literature search of the Pubmed/Scopus/Google Scholar/Cochrane/EMBASE databases was carried out, searching for articles on the use of artificial intelligence and PET in breast tumors. The search was updated from January 2010 to October 2021 and was limited to original articles published in English and about humans. A combination of the search terms "artificial intelligence", “breast cancer”, “breast tumor”, “PET”, “Positron emission tomography”, “PET/CT”, “PET/MRI”, “radiomic”,"texture analysis", “machine learning”, “deep learning” was used. Results: Twenty-three articles were selected following the PRISMA criteria from 139 records obtained from the Pubmed/Scopus/Google Scholar/Cochrane/EMBASE databases according to our research strategy. The QUADAS of 30 full-text articles assessed reported seven articles that were excluded for not being relevant to population and outcomes and/or for lower level of evidence. The majority of papers were at low risk of bias and applicability. The articles were divided per topic, such as the value of PET in the staging and re-staging of breast cancer patients, including new radiopharmaceuticals and simultaneous PET/MRI. Conclusion: Despite the current role of AI in this field remains still undefined, several applications for PET/CT imaging are under development, with some preliminary interesting results particularly focused on the staging phase that might be clinically translated after further validation studies.
For prostate cancer (PCa) biochemical recurrence (BCR), the primarily suggested imaging technique by the European Association of Urology (EAU) guidelines is prostate-specific membrane antigen (PSMA) positron emission tomography/computer tomography (PET/CT). Indeed, the increased detection rate of PSMA PET/CT for early BCR has led to a fast and wide acceptance of this novel technology. However, PCa is a very heterogeneous disease, not always easily assessable with the highly specific PSMA PET with around 10% of cases occuring without PSMA expression. In this paper, we present the case of a patient with PCa BCR that resulted negative on [68Ga]Ga-PSMA-11 PET/CT, but positive on [18F]Fluoromethylcholine (Choline) PET/CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.