Automatic surveillance systems for the maritime domain are becoming more and more important due to a constant increase of naval traffic and to the simultaneous reduction of crews on decks. However, available technology still provides only a limited support to this kind of applications. In this paper, a modular system for intelligent maritime surveillance, capable of fusing information from heterogeneous sources, is described. The system is designed to enhance the functions of the existing Vessel Traffic Services systems and to be deployable in populated areas, where radar-based systems cannot be used due to the high electromagnetic radiation emissions. A quantitative evaluation of the proposed approach has been carried out on a large and publicly available data set of images and videos, collected from multiple real sites, with different light, weather, and traffic conditions.
Abstract-Many modern robotics applications require robots to function autonomously in dynamic environments including other decision making agents, such as people or other robots. This calls for fast and scalable interactive motion planning. This requires models that take into consideration the other agent's intended actions in one's own planning. We present a real-time motion planning framework that brings together a few key components including intention inference by reasoning counterfactually about potential motion of the other agents as they work towards different goals. By using a light-weight motion model, we achieve efficient iterative planning for fluid motion when avoiding pedestrians, in parallel with goal inference for longer range movement prediction. This inference framework is coupled with a novel distributed visual tracking method that provides reliable and robust models for the current belief-state of the monitored environment. This combined approach represents a computationally efficient alternative to previously studied policy learning methods that often require significant offline training or calibration and do not yet scale to densely populated environments. We validate this framework with experiments involving multi-robot and human-robot navigation. We further validate the tracker component separately on much larger scale unconstrained pedestrian data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.