The identification of early and stage-specific biomarkers for Alzheimer's disease (AD) is critical, as the development of disease-modification therapies may depend on the discovery and validation of such markers. The identification of early reliable biomarkers depends on the development of new diagnostic algorithms to computationally exploit the information in large biological datasets. To identify potential biomarkers from mRNA expression profile data, we used the Logic Mining method for the unbiased analysis of a large microarray expression dataset from the anti-NGF AD11 transgenic mouse model. The gene expression profile of AD11 brain regions was investigated at different neurodegeneration stages by whole genome microarrays. A new implementation of the Logic Mining method was applied both to early (1-3 months) and late stage (6-15 months) expression data, coupled to standard statistical methods. A small number of "fingerprinting" formulas was isolated, encompassing mRNAs whose expression levels were able to discriminate between diseased and control mice. We selected three differential "signature" genes specific for the early stage (Nudt19, Arl16, Aph1b), five common to both groups (Slc15a2, Agpat5, Sox2ot, 2210015, D19Rik, Wdfy1), and seven specific for late stage (D14Ertd449, Tia1, Txnl4, 1810014B01Rik, Snhg3, Actl6a, Rnf25). We suggest these genes as potential biomarkers for the early and late stage of AD-like neurodegeneration in this model and conclude that Logic Mining is a powerful and reliable approach for large scale expression data analysis. Its application to large expression datasets from brain or peripheral human samples may facilitate the discovery of early and stage-specific AD biomarkers.
Abstract.A digraph is upward planar if it has a planar drawing such that all the edges are monotone with respect to the vertical direction. Testing upward planarity and constructing upward planar drawings is important for displaying hierarchical network structures, which frequently arise in software engineering, project management, and visual languages. In this paper we investigate upward planarity testing of single-source digraphs; we provide a new combinatorial characterization of upward planarity and give an optimal algorithm for upward planarity testing. Our algorithm tests whether a single-source digraph with n vertices is upward planar in O(n) sequential time, and in O(log n) time on a CRCW PRAM with n log log n/ log n processors, using O(n) space. The algorithm also constructs an upward planar drawing if the test is successful. The previously known best result is an O(n 2 )-time algorithm by Hutton and Lubiw [Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1991, pp. 203-211]. No efficient parallel algorithms for upward planarity testing were previously known.
BackgroundAlzheimer’s Disease (AD) is a neurodegenaritive disorder characterized by a progressive dementia, for which actually no cure is known. An early detection of patients affected by AD can be obtained by analyzing their electroencephalography (EEG) signals, which show a reduction of the complexity, a perturbation of the synchrony, and a slowing down of the rhythms.MethodsIn this work, we apply a procedure that exploits feature extraction and classification techniques to EEG signals, whose aim is to distinguish patient affected by AD from the ones affected by Mild Cognitive Impairment (MCI) and healthy control (HC) samples. Specifically, we perform a time-frequency analysis by applying both the Fourier and Wavelet Transforms on 109 samples belonging to AD, MCI, and HC classes. The classification procedure is designed with the following steps: (i) preprocessing of EEG signals; (ii) feature extraction by means of the Discrete Fourier and Wavelet Transforms; and (iii) classification with tree-based supervised methods.ResultsBy applying our procedure, we are able to extract reliable human-interpretable classification models that allow to automatically assign the patients into their belonging class. In particular, by exploiting a Wavelet feature extraction we achieve 83%, 92%, and 79% of accuracy when dealing with HC vs AD, HC vs MCI, and MCI vs AD classification problems, respectively.ConclusionsFinally, by comparing the classification performances with both feature extraction methods, we find out that Wavelets analysis outperforms Fourier. Hence, we suggest it in combination with supervised methods for automatic patients classification based on their EEG signals for aiding the medical diagnosis of dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.