Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM) model, where the assets are limited with the introduction of quantity and cardinality constraints.\ud We propose a completely new approach for solving the LAM model based on a reformulation as a Standard Quadratic Program, on a new lower bound that we establish, and on other recent theoretical and computational results for such problem. These results lead to an exact algorithm for solving the LAM model for small size problems. For larger problems, such algorithm can be relaxed to an efficient and accurate heuristic procedure that is able to find the optimal or the best-known solutions for problems based on some standard financial data sets that are used by several other authors. We also test our method on five new data sets involving real-world capital market indices from major stock markets. We compare our results with those of CPLEX and with those obtained with very recent heuristic approaches in order to illustrate the effectiveness of our method in terms of solution quality and of computation time. All our data sets and results are publicly available for use by other researchers
A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. Among the problems which can be transformed into a StQP are the general quadratic problem over a polytope, and the maximum clique problem in a graph. In this paper we present several new polynomial-time bounds for StQP ranging from very simple and cheap ones to more complex and tight constructions. The main tools employed in the conception and analysis of most bounds are Semidefinite Programming and decomposition of the objective function into a sum of two quadratic functions, each of which is easy to minimize. We provide a complete diagram of the dominance, incomparability, or equivalence relations among the bounds proposed in this and in previous works. In particular, we show that one of our new bounds dominates all the others. Furthermore, a specialization of such bound dominates Schrijver's improvement of Lovasz's theta function bound for the maximum size of a clique in a graph
A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a SLQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problern in an associated graph. Such a Clique problem, which does not seem to have been Studied before, is then solved with all exact and a heuristic algorithm. Some computational experience shows that Our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature. (c) 2007 Elsevier B.V. All rights reserved
For a function defined on the integer lattice, we consider discrete versions of midpoint convexity, which offer a unifying framework for discrete convexity of functions, including integral convexity, L -convexity, and submodularity. By considering discrete midpoint convexity for all pairs at ∞ -distance equal to two or not smaller than two, we identify new classes of discrete convex functions, called locally and globally discrete midpoint convex functions. These functions enjoy nice structural properties. They are stable under scaling and addition, and satisfy a family of inequalities named parallelogram inequalities. Furthermore, they admit a proximity theorem with the same small proximity bound as that for L -convex functions. These structural properties allow us to develop an algorithm for the minimization of locally and globally discrete midpoint convex functions based on the proximity-scaling approach and on a novel 2-neighborhood steepest descent algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.