Euterpe edulis is an endangered palm species that provides the most important non-timber forest product exploited in its natural habitat, the Brazilian Atlantic Forest hotspot1,2. From 1991 to 2017, pasturelands, agriculture, and monoculture of tree plantations were responsible for 97% of Atlantic Forest deforested areas in Brazil and Santa Catarina was one of the Brazilian states with the greatest loss of forest area 3. In the last decade, E. edulis fruits reached their highest commercial value, producing the southeastern equivalent of Amazonian ‘‘açai’’ (Euterpe oleracea) 4–6. As a shade-tolerant species, E. edulis adapts very well to agroforestry systems 5,7. To evaluate potential areas for cultivation of E. edulis through agroforestry systems, we developed and applied a spatial model for mapping suitable areas. To accomplish this, we analyzed multisource biophysical data and E. edulis distribution data from the Forest Inventory of Santa Catarina. We identified two areas with potential occurrence of the species, one in the domains of coastal Dense Ombrophilous Forest where the species is more common and another in the domains of inland Deciduous Seasonal Forest where its occurrence was suspected, but not proven, until 2021. Today, Deciduous Seasonal Forest is the most fragmented and impacted by agriculture. Our model, together with confirmed areas of occurrence, indicates that deciduous seasonal forest region should be prioritized for production and recovery of E. edulis through agroforestry systems.
Euterpe edulis is an endangered palm species that provides the most important non-timber forest product exploited in its natural habitat, the Brazilian Atlantic Forest hotspot1,2. From 1991 to 2017, pasturelands, agriculture, and monoculture of tree plantations were responsible for 97% of Atlantic Forest deforested areas in Brazil and Santa Catarina was one of the Brazilian states with the greatest loss of forest area 3. In the last decade, E. edulis fruits reached their highest commercial value, producing the southeastern equivalent of Amazonian ‘‘açai’’ (Euterpe oleracea) 4–6. As a shade-tolerant species, E. edulis adapts very well to agroforestry systems 5,7. To evaluate potential areas for cultivation of E. edulis through agroforestry systems, we developed and applied a spatial model for mapping suitable areas. To accomplish this, we analyzed multisource biophysical data and E. edulis distribution data from the Forest Inventory of Santa Catarina. We identified two areas with potential occurrence of the species, one in the domains of coastal Dense Ombrophilous Forest where the species is more common and another in the domains of inland Deciduous Seasonal Forest where its occurrence was suspected, but not proven, until 2021. Today, Deciduous Seasonal Forest is the most fragmented and impacted by agriculture. Our model, together with confirmed areas of occurrence, indicates that deciduous seasonal forest region should be prioritized for production and recovery of E. edulis through agroforestry systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.