Abstract. Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC) archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Niño-Southern Oscillation (ENSO) phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs), relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Niña events compared to El Niño events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Niña seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western) part of the basin as well as for the northeast (southwest) shift of points of cyclogenesis during El Niño (La Niña) events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables.
Abstract. Conventional and wavelet methods are combined to characterize gravity-waves (GWs) produced by two intense tropical cyclones (TCs) in the upper troposphere and lower stratosphere (UT/LS) from GPS winsonde data. Analyses reveal large contribution of GWs induced by TCs to wave energy densities in the UT/LS. An increase in total energy density of about 30% of the climatological energy density in austral summer was estimated in the LS above Tromelin during TC Dina. Four distinct periods in GW activity in relation with TC Faxai stages is observed in the UT. Globally, GWs have periods of 6 h-2.5 days, vertical wavelenghts of 1-3 km and horizontal wavelengths <1000 km in the UT during the evolution of TCs. Horizontal wavelengths are longer in the LS and about 2200 km during TCs. Convective activity over the basin and GW energy density were modulated by mixed equatorial waves of 3-4 days, 6-8 days and 10-13 days confirmed by Hövmöller diagram, Fourier and wavelet analyses of OLR data. Moreover, location of GW sources is below the tropopause height when TCs are intense otherwise varies at lower tropospheric heights depending on the strength of convection. Finally, the maximum surface wind speeds of TCs Dina and Faxai can be linearly estimated with total energy densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.