Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone–Indian hedgehog–Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer.
The cDNA of rainbow trout estrogen receptor (rtER), highly and stably expressed in yeast, Sacchat-om j c e s c,erevisirie, was used to analyse the biological activity of the receptor. The rtER niRNA encoded a 65-kDa protein which was iininunorevealed by a specific antibody and migrated with the authentic rtER major protein form detected in trout liver. Yeast rtER bound estradiol with high affinity and the dissociation constant (KCI = 1.35 nM) was very similar to the value measured from trout liver extracts but 3-5-fold higher than the KtI found for human estrogen receptor (hER). This indicates therefore that the rtER has a lower estradiol affinity compared to the human receptor. While the hER K,, remained unchanged at both 4°C or 22"C, it was slightly modified at 30°C. The K,I measured for rtER at 22°C and 30°C were about 2-fold, and 12-fold higher, respectively, than the K,( obtained at 4°C suggesting an alteration of the rtER affinity for its ligand at elevated temperature. To examine the estrogen-receptor-mediated activation of transcription in yeast, reporter plasmids integrated or not in the yeast genome were used. The reporter genes consist of one, two, or three copies of estrogen-responsive elements (ERE) upstream of the yeast proximal CYCI or UKA3 promoters fused to the lacZ gene of Excherichia coli coding for p-galactosidase.The induction of /I-galactosidase activity for all reporter genes was strictly dependent on the presence of rtER and estrogens. The activation of transcription mediated by rtER responded in an estradiol-dosedependent manner as in animal cells. However, compared to hER, the estradiol concentration necessary to achieve maximal activation was 10-fold higher. This is probably a consequence of the lower estradiolaffinity for rtER compared to hER. The levels of induction of the reporter genes containing two or three ERE were \trongly enhanced compared to the one ERE construct. This is in agreement with the synergistic effect previously described for multiple ERE. The magnitudes of transcriptional induction mediated by rtER and hER were similar when the reporter gene containing three ERE was used but changed when the one ERE construct was used. In this case transcriptional activation mediated by rtER was 10-20-fold lower. This suggests that rtER requires protein/protein interaction for i t s stabilization on DNA. Antiestrogens were able to bind rtER and promote gene transcription. However, to produce effects comparable to those obtained with estrogens, much higher concentrations were required. This may imply nonetheless that antihormones were capable of provoking efficient interactions of rtER with the transcriptional machinery Keywonl.~; steroid action ; estrogen receptor; yeast expression; transcriptional activity.
A relation between the chemical structure of a xenobiotic and its steroidal action has not yet been clearly established. Thus, it is not possible to define the estrogenic potency of different xenobiotics. An assessment may be accomplished by the use of different bioassays. We have previously developed a yeast system highly and stably expressing rainbow trout estrogen receptor (rtER) in order to analyze the biological activity of the receptor. The recombinant yeast system appears to be a reliable, rapid and sensitive bioassay for the screening and determination of the direct interaction between ER and estrogenic compounds. This system was used in parallel with a more elaborate biological system, trout hepatocyte aggregate cultures, to examine the estrogenic potency of a wide spectrum of chemicals commonly found in the environment. In hepatocyte cultures, the vitellogenin gene whose expression is principally dependent upon estradiol was used as a biomarker. Moreover, competitive binding assays were performed to determine direct interaction between rtER and xenobiotics. In our study, 50%of the 49 chemical compounds tested exhibited estrogenic activity in the two bioassays: the herbicide diclofop-methyl; the fungicides biphenyl, dodemorph, and triadimefon; the insecticides lindane, methyl parathion, chlordecone, dieldrin, and endosulfan; polychlorinated biphenyl mixtures; the plasticizers or detergents alkylphenols and phthalates; and phytoestrogens. To investigate further biphenyl estrogenic activity, its principal metabolites were also tested in both bioassays. Among these estrogenic compounds, 70% were able to activate rtER in yeast and hepatocytes with variable induction levels according to the system. Nevertheless, 30% of these estrogenic compounds exhibited estrogenic activity in only one of the bioassays, suggesting the implication of metabolites or different pathways in the activation of gene transcription. This paper shows that it is important to combine in vivo bioassays with in vitro approaches to elucidate the mechanism of xenoestrogen actions.
This study was conducted to determine if the cadmium-mediated inhibition of vitellogenesis observed in fish collected from contaminated areas or undergoing experimental exposure to cadmium correlated with modification in the transcriptional activity of the estrogen receptor. A recombinant yeast system expressing rainbow trout (Oncorhynchus mykiss) estradiol receptor or human estradiol receptor was used to evaluate the direct effect of cadmium exposure on estradiol receptor transcriptional activity. In recombinant yeast, cadmium reduced the estradiol-stimulated transcription of an estrogen-responsive reporter gene. In vitro-binding assays indicated that cadmium did not affect ligand binding to the receptor. Yeast one- and two-hybrid assays showed that estradiol-induced conformational changes and receptor dimerization were not affected by cadmium; conversely, DNA binding of the estradiol receptor to its cognate element was dramatically reduced in gel retardation assay. This study provides mechanistic data supporting the idea that cadmium is an important endocrine disrupter through a direct effect on estradiol receptor transcriptional activity and may affect a number of estrogen signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.