The design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors to reduce the loss of ammonia has been carried out. Forty phosphorus derivatives were synthesized and their inhibitory activities evaluated against that of jack bean urease. In addition, in vivo assays have been carried out. All of the compounds were characterized by IR, (1)H NMR, MS, and elemental microanalysis. In some cases, detailed molecular modeling studies were carried out, and these highlighted the interaction between the enzyme active center and the compounds and also the characteristics related to their activity as urease inhibitors. According to the IC(50) values for in vitro inhibitory activity, 12 compounds showed values below 1 microM and 8 of them represent improvements of activity in comparison to the commercial urease inhibitor N-n-butylthiophosphorictriamide (NBPT) (100 nM) (AGROTAIN). On the basis of the activity results and the conclusions of the molecular modeling study, a structural model for new potential inhibitors has been defined.
In order to investigate the possible involvement of free polyamines and proline in the mechanism underlying the action of nitrate in correcting the negative effects associated with ammonium and urea nutrition in certain plant species, we studied plant contents of free polyamines and proline associated with nitrogen nutrition involving different nitrogen forms (nitrate, ammonium, urea) in two plant species, wheat and pepper. The results showed that ammonium nutrition and, to a lesser extent, urea nutrition were associated with significant increases in plant putrescine content that were well correlated with reductions in plant growth. These negative effects of ammonium and urea nutrition were corrected by the presence of nitrate in the nutrient solution; the presence of nitrate was also related to a significant decrease in the plant putrescine content. These results are compatible with a specific effect of nitrate reducing ammonium accumulation through the improvement of ammonium assimilation. As for the plant proline content, in pepper a slight increase in this parameter was associated with ammonium and urea nutrition, but it was also decreased by the presence of nitrate in the nutrient solution. These changes, however, were not so clearly related to the variations in plant growth as in the case of putrescine content. These results are compatible with the hypothesis that putrescine biosynthesis might be related to proline degradation by a specific pathway related to ammonium detoxification.
The use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use of urea combined with urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), in an attempt to delay the hydrolysis of urea in the soil. The aim of this study was to perform an in-depth analysis of the effect that NBPT use has on plant growth and N metabolism. Wheat plants were cultivated in a greenhouse experiment lasting 4 weeks and fertilized with urea and NBPT at different concentrations (0, 0.012, 0.062, 0.125%). Each treatment was replicated six times. A nonfertilized control was also cultivated. Several parameters related with N metabolism were analysed at the end of growth period. NBPT use was found to have visible effects, such as a transitory yellowing of the leaf tips, at the end of the first week of treatment. At a metabolic level, plants treated with the inhibitor were found to have more urea in their tissues and a lower amino acid content, lower glutamine synthetase activity, and lower urease and glutamine synthetase content at the end of the study period, whereas their urease activity seemed to have recovered by this stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.