Fluorescent naphthoxazoles and their boron derivatives have been synthesized and applied as superior and selective probes for endocytic pathway tracking in live cancer cells. The best fluorophores were compared with the commercially available acridine orange (co-staining experiments), showing far better selectivity.
This review discusses the state of the art, challenges and perspectives in recent applications of electrochemistry in the life sciences. It deals mainly with the elucidation of molecular mechanisms of drug action, drug design and development, involving electron transfer, pharmaco-electrochemistry (the combination of electrochemical and pharmacological assays), and electrochemical studies of membrane models and drug delivery. It aims to shed light on the question: does electrochemistry really contribute to this area? It includes a general introduction for the use of electrochemistry in the life sciences, with a focus on how electrochemistry can uniquely provide both kinetic and thermodynamic information. A number of studies are reported in the literature and from the authors' laboratories, including the investigation of biooxidative/bioreductive activation of pro-drugs, DNA alkylation, electrochemically- based release of reactive oxygen and nitrogen species, with a particular emphasis on quinones, ferrocifens and compounds with mixed-functionality. Within the context of drug delivery and bioavailability, the electrochemical investigation of supramolecular interactions of the chosen classes of compounds with cyclodextrins and lipid bilayers, in relation to their solubilization and vectorization was also carried out. The updated examples herein illustrate how relevant and challenging the integration of electrochemistry, supramolecular and materials chemistry, biochemistry and medical knowledge for the design and development of redox-selective molecular approaches is. Many questions related to these fields are still unclear and the search for selectivity toward redox therapeutic agents remains of expanding interest. This review hopes to stimulate researchers to become more involved in this fruitful interface between electrochemistry and the life sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.