Neuronavigation has become an essential neurosurgical tool in pursuing minimal invasiveness and maximal safety, even though it has several technical limitations. Augmented reality (AR) neuronavigation is a significant advance, providing a real-time updated 3D virtual model of anatomical details, overlaid on the real surgical field. Currently, only a few AR systems have been tested in a clinical setting. The aim is to review such devices. We performed a PubMed search of reports restricted to human studies of in vivo applications of AR in any neurosurgical procedure using the search terms “Augmented reality” and “Neurosurgery.” Eligibility assessment was performed independently by two reviewers in an unblinded standardized manner. The systems were qualitatively evaluated on the basis of the following: neurosurgical subspecialty of application, pathology of treated lesions and lesion locations, real data source, virtual data source, tracking modality, registration technique, visualization processing, dis- play type, and perception location. Eighteen studies were included during the period 1996 to September 30, 2015. The AR systems were grouped by the real data source: microscope (8), hand- or head-held cameras (4), direct patient view (2), endoscope (1), and X-ray fluoroscopy (1) head-mounted display (1). A total of 195 lesions were treated: 75 (38.46 %) were neoplastic, 77 (39.48 %) neurovascular, and 1 (0.51 %) hydrocephalus, and 42 (21.53 %) were undetermined. Current literature confirms that AR is a reliable and versatile tool when performing minimally invasive approaches in a wide range of neurosurgical diseases, although prospective randomized studies are not yet available and technical improvements are needed.
Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) "augmented reality" AND "open surgery", (2) "augmented reality" AND "surgery" NOT "laparoscopic" NOT "laparoscope" NOT "robotic", (3) "mixed reality" AND "open surgery", (4) "mixed reality" AND "surgery" NOT "laparoscopic" NOT "laparoscope" NOT "robotic". The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice.
The growing availability of self-contained and affordable augmented reality headsets such as the Microsoft HoloLens is encouraging the adoption of these devices also in the healthcare sector. However, technological and human-factor limitations still hinder their routine use in clinical practice. Among them, the major drawbacks are due to their general-purpose nature and to the lack of a standardized framework suited for medical applications and devoid of platform-dependent tracking techniques and/or complex calibration procedures. To overcome such limitations, in this paper we present a software framework that is designed to support the development of augmented reality applications for custom-made headmounted displays designed to aid high-precision manual tasks. The software platform is highly configurable, computationally efficient, and it allows the deployment of augmented reality applications capable to support in situ visualization of medical imaging data. The framework can provide both optical and video see-throughbased augmentations and it features a robust optical tracking algorithm. An experimental study was designed to assess the efficacy of the platform in guiding a simulated task of surgical incision. In the experiments, the user was asked to perform a digital incision task, with and without the aid of the augmented reality headset. The task accuracy was evaluated by measuring the similarity between the traced curve and the planned one. The average error in the augmented reality tests was < 1 mm. The results confirm that the proposed framework coupled with the new-concept headset may boost the integration of augmented reality headsets into routine clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.