Presenilin 1 (PS1) is a key factor for L L-amyloid (Ab) formation in Alzheimer disease (AD). Homocysteine accumulation, frequently observed in AD patients, may be a sign of a metabolic alteration in the S-adenosylmethionine (SAM) cycle, which generates the overexpression of genes controlled by methylation of their promoters, when the cytosine in CpG moieties becomes unmethylated. The methylation of a gene involved in the processing of amyloid precursor protein may prevent Ab formation by silencing the gene. Here we report that SAM administration, in human neuroblastoma SK-N-SH cell cultures, downregulates PS1 gene expression and Ab production. ß
Microgravity exerts dramatic effects on cell morphology and functions, by disrupting cytoskeleton and adhesion structures, as well as by interfering with biochemical pathways and gene expression. Impairment of cells behavior has both practical and theoretical significance, given that investigations of mechanisms involved in microgravity-mediated effects may shed light on how biophysical constraints cooperate in shaping complex living systems. By exposing breast cancer MDA-MB-231 cells to simulated microgravity (~0.001 g), we observed the emergence of two morphological phenotypes, characterized by distinct membrane fractal values, surface area, and roundness. Moreover, the two phenotypes display different aggregation profiles and adherent behavior on the substrate. These morphological differences are mirrored by the concomitant dramatic functional changes in cell processes (proliferation and apoptosis) and signaling pathways (ERK, AKT, and Survivin). Furthermore, cytoskeleton undergoes a dramatic reorganization, eventually leading to a very different configuration between the two populations. These findings could be considered adaptive and reversible features, given that, by culturing microgravity-exposed cells into a normal gravity field, cells are enabled to recover their original phenotype. Overall these data outline the fundamental role gravity plays in shaping form and function in living systems.
Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.