The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.
Abstract-Constraint tightening to non-conservatively guarantee recursive feasibility and stability in Stochastic Model Predictive Control is addressed. Stability and feasibility requirements are considered separately, highlighting the difference between existence of a solution and feasibility of a suitable, a priori known candidate solution. Subsequently, a Stochastic Model Predictive Control algorithm which unifies previous results is derived, leaving the designer the option to balance an increased feasible region against guaranteed bounds on the asymptotic average performance and convergence time. Besides typical performance bounds, under mild assumptions, we prove asymptotic stability in probability of the minimal robust positively invariant set obtained by the unconstrained LQ-optimal controller. A numerical example, demonstrating the efficacy of the proposed approach in comparison with classical, recursively feasible Stochastic MPC and Robust MPC, is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.