Well-designed energy management strategies are essential for the good operation of Hybrid Electric Vehicles (HEVs) in terms of fuel economy and pollutant emissions reduction, regardless of the specific powertrain architecture. The goal of this paper is to propose two innovative supervisory control strategies for HEVs derived from different optimization algorithms and to assess HEVs’ fuel consumption reduction (compared to conventional vehicles). These approaches are derived from the literature and modified by the authors to present novel algorithms for the optimization problem. One is based on Dynamic Programming (DP), here referred to as the Forward Approach to Dynamic Programming (FADP) and introduces a different implementation of the DP to achieve computational and accuracy benefits. The other is based on the Equivalent Consumption Minimization Strategy (ECMS) approach, and it adapts to the latest driving conditions using information gathered in a finite-length backward-looking horizon. These techniques are used to achieve the optimal power share between the thermal engine and the battery of a parallel HEV. Their performances are compared and analysed in terms of achieved fuel economy and computational time with respect to conventional DP and Pontryagin’s Minimum Principle (PMP) approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.