This paper focuses on the impact of annealing on the current conduction and trap states of metal-insulator-metal capacitors with CeO2/La2O3 dielectrics. Capacitance-frequency measurements identify two main trap levels (T1 and T2), characterized by an activation energy of 0.2 and 0.3 eV, respectively, and by a time constant of 1 ms and 20 μs at room temperature. The current conduction is found to be ruled by a Poole-Frenkel effect and space charge limited current under positive and negative bias, respectively. Selective annealing of CeO2 and La2O3 layers clarifies the nature of the aforementioned traps. Although providing no change in the activation energy, an additional annealing of the CeO2 and La2O3 layer is found to significantly change the trap amplitude of T1 and T2, respectively. The corresponding change of the current conduction in the region where trap assisted mechanisms play a major role is discussed.
Abstract. This work deals with a cobalt-based alloy thin film magnetic concentrator (MC) which is fully integrated on a Hall sensor integrated circuit (IC) developed in the 0.35 µm Bipolar CMOS DMOS (BCD) technology on 8" silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field H c <10A/m and saturation magnetization (µ 0 M S ) of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.