The present study is focused to evaluate the effect of three different brown seaweeds on blood pressure and heart rate (HR) using spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. The seaweeds, Turbinaria ornata (T. ornata), Sargassum species (Sargassum sp.) and Padina tetrastromatica (P. tetrastromatica), were extracted in cold water and freeze-dried. Anaesthetised rats were prepared for direct blood pressure measurements with the changes in HR also being monitored. Rats were administered intravenously with the aqueous extract of the seaweeds at doses of 2.5 to 20.0 mg/kg. Concentrations of Na + , K + , Ca 2+ and Mg 2+ found in the dose of 20.0 mg/kg of the marine plant extracts were determined. Subsequently, salt solutions containing the equivalent cationic concentration found in each of the seaweed extracts were tested on Sprague-Dawley (SD) rats. All seaweeds investigated produced significant (P < 0.05) reductions in the blood pressure of both SHR and the control WKY rats. In T. ornata, significant (P < 0.05) HR reducing effect was produced. In contrast, this effect was not seen in other brown seaweeds tested. Analysis of the ionic composition present in all the extracts revealed that the salt solution with equivalent ionic content of each seaweed extract did not produce any significant decrease in blood pressure of the SD rats. In conclusion, the data obtained from the present study suggest that the aqueous extracts of T. ornata, Sargassum sp. and P. tetrastromatica may contain blood pressure lowering agents.
Probiotic supplements have been increasingly reported for their usefulness in delaying the development and progression of non-alcoholic fatty liver disease (NAFLD). Literature on the impact of probiotics on NAFLD covered various aspects of the disease. This study was undertaken to systematically review in vivo findings on hepatoprotection of probiotics against NAFLD. The literature search was performed through Cochrane, PubMed/MEDLINE, Embase, and Web of Science databases. Interventions of known probiotics in NAFLD-induced animal model with at least one measurable NAFLD-related parameter were included. The data were extracted by all authors independently. Quality assessment was conducted using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE's) Risk of Bias (RoB) tool. P-values of measures were compared inter- and intra-study for each parameter. Forty-four probiotic-based studies of NAFLD-induced rodents were shortlisted. The majority of the studies were presented with low/unclear risk of bias. Probiotics improved the histopathology of NAFLD rodents (primary outcome). Most of the probiotic-supplemented NAFLD rodents were presented with mixed effects on serum liver enzymes but with improved hepatic and serum lipid profiles (including increased serum high-density lipoprotein cholesterol). The findings were generally accompanied by downregulation of hepatic lipogenic, oxidative, and inflammatory signallings. Probiotics were found to modulate gut microbiota composition and its products, and intestinal permeability. Probiotics also resulted in better glycaemic control and reduced liver weight. Altogether, the present qualitative appraisals strongly implied the hepatoprotective potential of probiotics against NAFLD in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.