Abstract. In the present paper we study the thermodynamical properties of finitely generated continuous subgroup actions. We propose a notion of topological entropy and pressure functions that does not depend on the growth rate of the semigroup and introduce strong and orbital specification properties, under which, the semigroup actions have positive topological entropy and all points are entropy points. Moreover, we study the convergence and Lipschitz regularity of the pressure function and obtain relations between topological entropy and exponential growth rate of periodic points in the context of semigroups of expanding maps, obtaining a partial extension of the results obtained by Ruelle for Z d -actions [33] . The specification properties for semigroup actions and the corresponding one for its generators and the action of push-forward maps is also discussed.
We consider semigroups of Ruelle-expanding maps, parameterized by random walks on the free semigroup, with the aim of examining their complexity and exploring the relation between intrinsic properties of the semigroup action and the thermodynamic formalism of the associated skew-product. In particular, we clarify the connection between the topological entropy of the semigroup action and the growth rate of the periodic points, establish the main properties of the dynamical zeta function of the semigroup action and prove the existence of stationary probability measures.
In this paper we introduce a notion of measure theoretical entropy for a finitely generated free semigroup action and establish a variational principle when the semigroup is generated by continuous self maps on a compact metric space and has finite topological entropy. In the case of semigroups generated by Ruelle-expanding maps we prove the existence of equilibrium states and describe some of their properties. Of independent interest are the different ways we will present to compute the metric entropy and a characterization of the stationary measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.