We consider discrete time dynamical systems and show the link between Hitting Time Statistics (the distribution of the first time points land in asymptotically small sets) and Extreme Value Theory (distribution properties of the partial maximum of stochastic processes). This relation allows to study Hitting Time Statistics with tools from Extreme Value Theory, and vice versa. We apply these results to non-uniformly hyperbolic systems and prove that a multimodal map with an absolutely continuous invariant measure must satisfy the classical extreme value laws (with no extra condition on the speed of mixing, for example). We also give applications of our theory to higher dimensional examples, for which we also obtain classical extreme value laws and exponential hitting time statistics (for balls). We extend these ideas to the subsequent returns to asymptotically small sets, linking the Poisson statistics of both processes.J. M.
The object of this paper is twofold. From one side we study the dichotomy, in
terms of the Extremal Index of the possible Extreme Value Laws, when the rare
events are centred around periodic or non periodic points. Then we build a
general theory of Extreme Value Laws for randomly perturbed dynamical systems.
We also address, in both situations, the convergence of Rare Events Point
Processes. Decay of correlations against $L^1$ observables will play a central
role in our investigations
Abstract. We prove the equivalence between the existence of a non-trivial hitting time statistics law and Extreme Value Laws in the case of dynamical systems with measures which are not absolutely continuous with respect to Lebesgue. This is a counterpart to the result of the authors in the absolutely continuous case. Moreover, we prove an equivalent result for returns to dynamically defined cylinders. This allows us to show that we have Extreme Value Laws for various dynamical systems with equilibrium states with good mixing properties. In order to achieve these goals we tailor our observables to the form of the measure at hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.