ABSTRACT:3D terrain models are an important instrument in areas like geology, agriculture and reconnaissance. Using an automated UAS with a line-based LiDAR can create terrain models fast and easily even from large areas. But the resulting point cloud may contain holes and therefore be incomplete. This might happen due to occlusions, a missed flight route due to wind or simply as a result of changes in the ground height which would alter the swath of the LiDAR system. This paper proposes a method to detect holes in 3D point clouds generated during the flight and adjust the course in order to close them. First, a grid-based search for holes in the horizontal ground plane is performed. Then a check for vertical holes mainly created by buildings walls is done. Due to occlusions and steep LiDAR angles, closing the vertical gaps may be difficult or even impossible. Therefore, the current approach deals with holes in the ground plane and only marks the vertical holes in such a way that the operator can decide on further actions regarding them. The aim is to efficiently create point clouds which can be used for the generation of complete 3D terrain models.
Visual Place Recognition and Visual Localization are essential components in navigation and mapping for autonomous vehicles especially in GNSS-denied navigation scenarios. Recent work has focused on ground or close to ground applications such as self-driving cars or indoor-scenarios and lowaltitude drone flights. However, applications such as Urban Air Mobility require operations in large-scale outdoor environments at medium to high altitudes. We present a new dataset named VPAIR. The dataset was recorded on board a light aircraft flying at an altitude of more than 300 meters above ground capturing images with a downwardfacing camera. Each image is paired with a high resolution reference render including dense depth information and 6-DoF reference poses. The dataset covers a more than one hundred kilometers long trajectory over various types of challenging landscapes, e.g. urban, farmland and forests. Experiments on this dataset illustrate the challenges introduced by the change in perspective to a bird's eye view such as in-plane rotations. The dataset will be made publicly available under https://github.com/AerVisLoc/vpair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.