Recently, automatic visual data understanding from drone platforms becomes highly demanding. To facilitate the study, the Vision Meets Drone Object Detection in Image Challenge is held the second time in conjunction with the 17-th International Conference on Computer Vision (ICCV 2019), focuses on image object detection on drones. Results of 33 object detection algorithms are presented. For each participating detector, a short description is provided in the appendix. Our goal is to advance the state-of-the-art detection algorithms and provide a comprehensive evaluation platform for them. The evaluation protocol of the VisDrone-DET2019 Challenge and the comparison results of all the submitted detectors on the released dataset are publicly available at the website: http: //www.aiskyeye.com/. The results demonstrate that there still remains a large room for improvement for object detection algorithms on drones.
Visual Place Recognition and Visual Localization are essential components in navigation and mapping for autonomous vehicles especially in GNSS-denied navigation scenarios. Recent work has focused on ground or close to ground applications such as self-driving cars or indoor-scenarios and lowaltitude drone flights. However, applications such as Urban Air Mobility require operations in large-scale outdoor environments at medium to high altitudes. We present a new dataset named VPAIR. The dataset was recorded on board a light aircraft flying at an altitude of more than 300 meters above ground capturing images with a downwardfacing camera. Each image is paired with a high resolution reference render including dense depth information and 6-DoF reference poses. The dataset covers a more than one hundred kilometers long trajectory over various types of challenging landscapes, e.g. urban, farmland and forests. Experiments on this dataset illustrate the challenges introduced by the change in perspective to a bird's eye view such as in-plane rotations. The dataset will be made publicly available under https://github.com/AerVisLoc/vpair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.