We report, for the first time to the best of our knowledge, spectral phase characterization and line-by-line pulse shaping of an optical frequency comb generated by nonlinear wave mixing in a microring resonator. Through programmable pulse shaping the comb is compressed into a train of near-transform-limited pulses of ≈ 300 fs duration (intensity full width half maximum) at 595 GHz repetition rate. An additional, simple example of optical arbitrary waveform generation is presented. The ability to characterize and then stably compress the frequency comb provides new data on the stability of the spectral phase and
Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for RF photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability, and bandwidth reconfiguration. In one configuration tuning of the RF passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes comb spectra, resulting in Gaussian RF filter lineshapes exhibiting extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.Optical frequency combs, generated via self-referenced and stabilized mode-locked lasers, have enabled revolutionary progress in precision optical frequency synthesis and metrology 1-4 . Optical combs are also of tremendous interest for other applications 5 , such as multi-wavelength coherent lightwave communications 6-8 , optical arbitrary waveform generation 9-11 , generation of low-phasenoise 12 or agile ultrabroadband microwaves 13 , and signal processing 6,14 . For these purposes, in which higher pulse repetition rates are desired and only moderate frequency stability is required, comb sources based on strong electro-optic modulation of a continuous-wave laser have seen substantial attention [15][16] . Here we report significant advances in RF photonic filters enabled by the ability to rapidly tune the timing of the comb and shape its power spectrum.
Microresonator optical frequency combs based on cascaded four-wave mixing are potentially attractive as a multi-wavelength source for on-chip optical communications. In this paper we compare time domain coherence, radio-frequency (RF) intensity noise, and individual line optical communications performance for combs generated from two different silicon nitride microresonators. The comb generated by one microresonator forms directly with lines spaced by a single free spectral range (FSR) and exhibits high coherence, low noise, and excellent 10 Gbit/s optical communications results. The comb generated by the second microresonator forms initially with multiple FSR line spacing, with additional lines later filling to reach single FSR spacing. This comb exhibits degraded coherence, increased intensity noise, and severely degraded communications performance. This study is to our knowledge the first to simultaneously investigate and observe a correlation between the route to comb formation, the coherence, noise, and optical communications performance of a Kerr comb.
Recent investigations of microcavity frequency combs based on cascaded four-wave mixing have revealed a link between the evolution of the optical spectrum and the observed temporal coherence. Here we study a silicon nitride microresonator for which the initial four-wave mixing sidebands are spaced by multiple free spectral ranges (FSRs) from the pump, then fill in to yield a comb with single FSR spacing, resulting in partial coherence. By using a pulse shaper to select and manipulate the phase of various subsets of spectral lines, we are able to probe the structure of the coherence within the partially coherent comb. Our data demonstrate strong variation in the degree of mutual coherence between different groups of lines and provide support for a simple model of partially coherent comb formation.
We present an electric-field cross-correlation technique that uses a pair of frequency combs to sweep phase and group delays independently without a mechanical stage. We demonstrate this technique for characterization of optical arbitrary waveforms composed of ~30 spectral lines from a 10 GHz frequency comb. Rapid data acquisition (tens of microseconds) enables interferometric spectral phase measurement of pulses subject to propagation over 20 km of optical fiber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.