We investigated the phylogenetic relationships in Tulipa in Turkey using DNA sequences from the plastid trnL‐trnF region and the internal transcribed spacer (ITS) of nuclear ribosomal DNA. We generated trnL‐trnF and nuclear ITS sequences for 11 Tulipa spp. from Turkey and compared the utility of trnL‐trnF and ITS sequences for phylogenetic analysis. Neighbor‐joining, Bayesian and maximum parsimony methods were implemented using the same matrices. Our study of Tulipa based on molecular data revealed congruent results with previous studies. Despite the relatively lower resolution of trnL‐trnF than that of ITS, both sequence matrices generated similar results. Three clades were clearly distinguished, corresponding to subgenera Tulipa, Eriostemones and Orithyia. It is not fully resolved whether Clusianae should be recognized as a separate section of subgenus Tulipa or a distinct subgenus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172, 270–279.
Expressed sequenced tags containing simple sequence repeats (EST-SSRs) were used to identify molecular markers associated with yellow rust resistance in wheat (Triticum aestivum L.). A cross between yellow rust resistant (PI178383) and susceptible (Harmankaya99) wheat genotypes was performed and respective DNA pools from the resistant and susceptible F 2 seedlings were constructed. 78 EST-SSR primers were used for bulked segregant analysis and one EST-SSR marker (Pk54), identified as 200 bp fragment, was present in the resistant parent and resistant F 2 hybrids but not in the susceptible ones. 108 wheat genotypes differing in yellow rust resistance were screened with Pk54 and 68 % of the wheat genotypes, known to be yellow rust resistant, had the Pk54 marker, further suggesting that the presence of this marker correlates with yellow rust resistance.
Bulk segregant analysis (BSA) was used to identify molecular markers associated with yellow rust disease resistance in wheat (Triticum aestivum L.). DNAs isolated from the selected yellow rust tolerant and susceptible F 2 individuals derived from a cross between yellow rust resistant and susceptible wheat genotypes were used to established a "tolerant" and a "susceptible" DNA pool. The BSA was then performed on these DNA pools using 230 markers that were previously mapped onto the individual wheat chromosomes. One of the SSR markers (Xgwm382) located on chromosome group 2 (A, B, D genomes) was present in the resistant parent and the resistant bulk but not in the susceptible parent and the susceptible bulk, suggesting that this marker is linked to a yellow rust resistance gene. The presence of Xgwm382 was also tested in 108 additional wheat genotypes differing in yellow rust resistance. This analysis showed that 81% of the wheat genotypes known to be yellow rust resistant had the Xgwm382 marker, further suggesting that the presence of this marker correlates with yellow rust resistance in diverse wheat germplasm. Therefore, Xgwm382 could be useful for marker assisted selection of yellow rust resistances genotypes in wheat breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.