Catalytic biodiesel production from vegetable oil and methanol using K2O/C has been studied. The aim of this research was to investigate the performance of a K2O/C catalyst for biodiesel production at varied of K2CO3 loading. The activated carbon-based from rice husk were fabricated via pyrolysis route. The catalyst were formed by depositing active phase K2CO3 (10%; 20%; 30%; 40%; 50%) on the carbon surface for comparative purposes. To better understand of the impregnation effects, particle size, surface topography, and atom composition, the catalysts were analyzed by Scanning Electron Miscroscopy (SEM) and Energy Dispersive X-Ray (EDX). Biodiesel was produced via transesterification reaction. The reaction was carried out during 90 minutes at 65°C using 4wt% of the catalyst and methanol to oil molar ratio 10:1. The highest yield of biodiesel was reached of 96.62% at K2O loading of 50% on carbon-based rice husk. The use of K2O/C as catalysts enhance the purity of the product (carbon-based effect). The characterization of biodiosel, such as viscosity, density, and acid number were evaluated to confirm the purpose of catalyst function. The biodiesel characterization showed in the range with SNI standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.