The main objective of this paper is the integration of safety analysis in a SysML-based systems engineering approach in order to make it more effective and efficient. It helps to ensure the consistency between safety analyses and system design and then to avoid late errors and to reduce system development time. To achieve this purpose, we tackled the following axes: 1) formalizing a SysML-based design methodology that will be the support for safety analyses; 2) providing an extension of SysML to enable the integration of specific needs for safety concepts in the system model; and 3) performing an automated exploration of the SysML models to generate necessary information to elaborate safety artifacts such as failure mode and effects analysis (FMEA) and fault tree analysis (FTA). The proposed methodology named safety integration in systems engineering (SafeSysE) is applied to a real case study from the aeronautics domain: electromechanical actuator (EMA).
Model-based system engineering is an efficient approach to specifying, designing, simulating and validating complex systems. This approach allows errors to be detected as soon as possible in the design process, and thus reduces the overall cost of the product. Uniformity in a system engineering project, which is by definition multidisciplinary, is achieved by expressing the models in a common modeling language such as SysML. This paper presents an approach to integrate safety analysis in SysML at early stages in the design process of safety-critical systems. Qualitative analysis is performed through functional as well as behavioral safety analysis and strengthened by formal verification method. This approach is applied to a real-life avionic system and contributes to the integration of formal models in the overall safety and systems engineering design process of complex systems.
The goal of the paper is the integration of safety analysis in a model-based systems engineering approach to ensure consistency between system design and safety artifacts. This integration permits the continuous improvement of the structure and behavior of the system. It also reduces system development time and prevents late detection of errors. To reach this purpose, the SafeSysE methodology is extended. In SafeSysE, a preliminary Failure Mode and Effects Analysis (FMEA) is automatically generated from a SysML model, and this FMEA is then completed by the safety expert but no further development was proposed. The contribution of this paper is to suggest recommendations based on the FMEA analysis in order to enhance the system design and make it comply with safety requirements. First, an updated system structure that may contain redundancy is proposed. Then, a redundancy profile is used to enrich the system model with redundancy information, which will allow the generation of a dynamic fault tree considering the system behavior. Finally, the generated dynamic fault tree should be analyzed in order to create a state machine diagram that describes the behavior of the system. The created state machine with an internal block diagram will help the system designers to better understand the system dysfunctions by simulating the system. The proposed methodology is applied to an Electro-Mechanical Actuator system which is used in the aeronautics domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.