The effects of chemical bath time in response to the bump height in electroless nickel immersion gold (ENIG) process was investigated. This paper presents the correlation between electroless process time, immersion gold process time and the bump height. A certain bump height need to be achieved in order to create acceptable solder bumps for reflow process. The study was done using a full factorial design of experiment (DOE). The DOE matrix is made of two levels with two factors. Analysis was done by plotting the main effects plot for each factor. The results suggest that higher process time increases the plating rate where the temperature fixed at 70 °C. Electroless nickel time has more influence to the bump height compared to immersion gold time.
Wireless Sensor Networks (WSN) consists of sensor nodes for monitoring and reporting sensible changes on a field to a specific server. One of the applications of WSN is large area monitoring, where sensor nodes are placed in far fields with limited power sources. Due to the adhered reason, the energy consumption of sensor nodes is considered as one of the major challenge in WSN. Many factor in WSN contributes to energy consumption such as Medium Access Control protocol (MAC), the network topology, and routing protocol. With the variety of factors that affects the energy consumption in WSN; the challenge of optimizing WSN networks toward a low energy consumption is becoming a hard problem. In the literature many efforts are paid for designing, implementing, and improving protocols in terms of power consumption. However, few efforts are paid for optimizing the existing protocols and other network parameters toward a green technology. This paper focuses in WSN infrastructure and protocols optimization by introducing the Ichi Taguchi (Taguchi) optimization method. Taguchi method is used to predict the best design parameters to achieve optimal performance parameters. Moreover, Taguchi method is used to optimize the energy consumed by sensor nodes against network protocols and network topology design parameters. A simulation experiments are curried out on the discrete event simulator OMNET++ for the purposes of this research paper. The obtained results show the impact of the network protocols toward the energy consumption. Furthermore, a proposed network topology and protocols set is introduced, and compared against the existing once.
This paper reports the factors that affect the bump height in electroless nickel immersion gold (ENIG) and their interrelation between each other. Bump height is a critical issue that needs to be investigated because a certain quality and requirements of bump height needs to be achieved prior to reflow oven soldering process. A total of four controllable process variables, with 16 sets of experiments were studied using a systematically designed design of experiment (DOE). The result suggests that the electroless nickel bath time has the most significant effect on the formation on bump height and consequently provide larger area for conductivity.
A compact parallel coupled line microstrip bandpass filter (BPF) for sub-6 GHz fifth generation (5G) applications is designed operating between edge frequencies of 3.40 and 3.80 GHz. The design is designed and simulated by means of the Advanced Design System (ADS) software using the flame retardant-4 (FR-4) board as the substrate. The BPF design applies the insertion loss method (ILM) to generate a parallel coupled line filter structure that performs passband permission and unwanted noise attenuation below 3.40 GHz and above 3.80 GHz, respectively. Consistent and relevant performances in terms of matching impedance, return loss (S11), insertion loss (S21), voltage standing wave ratio (VSWR), far field radiation pattern, gain, directivity, and radiated efficiency promise the microstrip BPF design has a potential for sub-6 GHz 5G applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.