Trichoderma sp. is extensively applied as a beneficial fungus for the management of plant diseases, plant growth promotion, induced resistance, and plays an important role in global sustainable agriculture. This study aimed to enhance the production of microbial xylanase in high titer from the endophytic fungus Trichoderma harzianum kj831197.1, and the cloning of xylanase genes in E. coli DH5α using a pUC19 vector. A combination of glucose, 0.1 mM, Tween 80 with lactose, and 2 mM galactose combined with malt extract boostedthe enzyme production. Xylanase production was maximized at a pH of 5.0, temp. of 30 °C, and agitation of 150 rpm in the presence of malt extract and bagasse as the best nitrogen source and waste, respectively, using submerged fermentation. The molecular weight of highly purified xylanase was 32 KDa, identified using SDS-PAGE. The xylanase gene of T. harzianum kj831197.1 was screened in fungal DNA using definite primers specified in the gene bank database. The identified region was excised using restriction enzymes HindIII and EcoRI and cloned into a pUC19 plasmid vector. Optimization of fermentation conditions improved xylanase production about 23.9-fold.The antifungal efficacy of xylanase toward different phytopathogenic fungi was determined. The highest inhibition was against Corynespora cassiicola, Alternaria sp., Fusarium oxysporum, and Botrytis fabae. This study offered an economical, simple, and efficient method using Trichoderma harzianum kj831197.1 for the production of the xylanase enzyme via the submerged fermentation method.
Background/aim
Urinary tract infections are commonly caused by the bacteria
Escherichia coli
and
Klebsiella pneumoniae
(UTI). The emergence of extended-spectrum -lactamase (ESBL)-producing bacteria strains has made UTI treatment more difficult.
Materials and methods
The aim of this study was to characterize
E. coli
and
K. pneumoniae
strains' cytotoxic effects, antibiotic sensitivity, interaction with urothelial cells, and reaction to photodynamic therapy.
Results
As demonstrated by the higher number of colonies formed, the ESBL +
E. coli
and
K. Pneumonia
showed a higher degree of binding with human urothelial cells. With the urothelial cells,
K. Pneumonia
had the highest binding ability. The cytotoxicity of non-ESBL generating E. coli and
K. Pneumonia
, on the other hand, was higher. With longer incubation, the discrepancy between the cytotoxic effects of non-ESBL producer and ESBL +
E. coli
decreased.
K. Pneumonia
was the opposite. The concentration of ESBL-negative
E. coli
was easily decreased by photodynamic therapy; however, after a two-hour incubation period, the number of
E. coli
ESBL + colonies increased from 124 percent to 294 percent.
Conclusion
With the duration of the incubation period, the number of non-ESBL-producing
K. Pneumonia
increased. Even with longer incubation times, the number of
K. Pneumonia
ESBL + colonies decreased, contrary to expectations. The findings show that the two bacterial species differed in terms of cytotoxicity, interaction with urothelial cells, and photodynamic therapy response.
Aflatoxins are the secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus and have severe pathological effects on the health of human and animals. The present study was designed to investigate the toxicopathological changes induced by aflatoxins and mitigative potential of Lactobacillus plantarum in broiler birds. One hundred and eighty broiler chicks at one day of age was procured from the local market, and chicks were equally divided into six groups with thirty birds in each group. These birds were treated with aflatoxins (300 and 600 µg/kg) and Lactobacillus plantarum (1 × 108 cfu/kg of feed) in different combinations. The first group was kept as the control, and only a basal diet was provided to birds (BD). In the second group (AF1), the first level of aflatoxins (300 µg/kg) was fed to the birds. In the third group (AF2), the second level of aflatoxins (600 µg/kg) was fed to birds. In the fourth group (AF1LP), Lactobacillus plantarum was given with first level of aflatoxins. In the fifth group (AF2LP), Lactobacillus plantarum was given with the second level of aflatoxins, and in the 6th group (BDLP), Lactobacillus plantarum alone was fed to the chicks. This experimental study was continued for 42 days. Birds were slaughtered after 42 days, and different parameters were assessed. Parameters studied were gain in body weight, organ weight along with some histopathological, hematological, biochemical parameters and residues of aflatoxins in liver and kidney. Lactobacillus plantarum improved the body weight gain and restored the relative organ weight. Hepatic and renal biomarkers returned to normal concentrations, serum proteins were restored in combination group AF1LP, and partial amelioration was observed in the AF2LP group. Red blood cells, white blood cells, hemoglobin centration and packed cell volume became normalized in the AF1LP group, while partial amelioration was observed in the AF2LP group. LP also reduced the concentration of aflatoxin residues in liver kidney and improved the TAC concentrations. The results of this study elucidated the mitigative potential of Lactobacillus plantarum against serum biochemical, histopathological, hematological and toxicopathological changes induced by aflatoxins in the chicks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.