Overexpression of the high affinity neurotensin receptor 1 (NTSR1), demonstrated in several human cancers, has been proposed as a new marker for human ductal pancreatic carcinoma and as an independent factor for poor prognosis for ductal breast cancer, head and neck squamous cell carcinoma, and non-small cell lung cancer. The aim of the present study was to develop new DOTA-neurotensin analogues for positron emission tomography (PET) imaging with (68)Ga and for targeted radiotherapy with (90)Y or (177)Lu. We synthesized a DOTA-neurotensin analogue series. Two of these peptides bear two sequence modifications for metabolic stability: DOTA-NT-20.3 shares the same peptide sequence as the previously described DTPA-NT-20.3. In the sequence of DOTA-NT-20.4, the Arg(8)-Arg(9) bond was N-methylated instead of the Pro(7)-Arg(8) bond in DOTA-NT-20.3. An additional sequence modification was introduced in DOTA-LB119 to increase stability. A spacer was added between DOTA and the peptide sequence to increase affinity. Binding to HT29 cells, which express NTSR1, in vivo stability, and biodistribution of the various analogues were compared, and the best candidate was used to image tumors of various sizes with the microPET in mice. (111)In-DOTA-NT-20.3, in spite of a relatively high uptake in kidneys, showed specific tumor uptake and elevated tumor to other organ uptake ratios. High contrast images were obtained at early time points after injection that allowed tumor detection at a time interval postinjection appropriate for imaging with the short-lived radionuclide (68)Ga. (111)In-DOTA-NT-20.4 displayed inferior binding to HT29 cells and reduced tumor uptake. (111)In-DOTA-LB119 displayed at early time points a significantly lower renal uptake but also a lower tumor uptake than (111)In-DOTA-NT-20.3, although binding to HT29 cells was similar. (68)Ga-DOTA-NT-20.3 displayed higher tumor uptake than (68)Ga-DOTA-LB119 and allowed the detection of very small tumors by PET. In conclusion, DOTA-NT-20.3 is a promising candidate for (68)Ga-PET imaging of neurotensin receptor-positive tumors. DOTA-NT-20.3 may also be considered for therapy, as the yttrium-labeled peptide has higher affinity than that of the indium-labeled one. A prerequisite for therapeutic application of this neurotensin analogue would be to lower kidney uptake, for example, by infusion of basic amino acids, gelofusin, or albumin fragments, to prevent nephrotoxicity, as with radiolabeled somatostatin analogues.
The increased expression of the neurotensin (NT) receptor NTS1 by different cancer cells, such as pancreatic adenocarcinoma and ductal breast cancer cells, as compared to normal epithelium, offers the opportunity to target these tumors with radiolabeled neurotensin analogues for diagnostic or therapeutic purposes. The aim of the present study was to design and synthesize new neurotensin radioligands and to select a lead molecule with high in vivo tumor selectivity for further development. Two series of neurotensin analogues bearing DTPA were tested: a series of NT(8-13) analogues, with DTPA coupled to the α-NH(2), sharing the same peptide sequence with analogues previously developed for radiolabeling with technetium or rhenium, as well as an NT(6-13) series in which DTPA was coupled to the ε-NH(2) of Lys(6). Changes were introduced to stabilize the bonds between Arg(8)-Arg(9), Pro(10)-Tyr(11), and Tyr(11)-Ile(12) to provide metabolic stability. Structure-activity studies of NT analogues have shown that the attachment of DTPA induces an important loss of affinity unless the distance between the chelator and the NT(8-13) sequence, which binds to the NTS1 receptor, is increased. The doubly stabilized DTPA-NT-20.3 exhibits a high affinity and an elevated stability to enzymatic degradation. It shows specific tumor uptake and high tumor to blood, to liver, and to intestine activity uptake ratios and affords high-contrast planar and SPECT images in an animal model. The DTPA-NT-20.3 peptide is a promising candidate for imaging neurotensin receptor-positive tumors, such as pancreatic adenocarcinoma and invasive ductal breast cancer. Analogues carrying DOTA are being developed for yttrium-90 or lutetium-177 labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.