Click chemistry has been employed for the assembly of novel and efficient triazole-based multidentate chelating systems while simultaneously attaching them to molecules of biological interest. The "click-to-chelate" approach offers a powerful new tool for the modification of (bio)molecules with metal chelators for potential diagnostic and therapeutic applications.
Overexpression of the high affinity neurotensin receptor 1 (NTSR1), demonstrated in several human cancers, has been proposed as a new marker for human ductal pancreatic carcinoma and as an independent factor for poor prognosis for ductal breast cancer, head and neck squamous cell carcinoma, and non-small cell lung cancer. The aim of the present study was to develop new DOTA-neurotensin analogues for positron emission tomography (PET) imaging with (68)Ga and for targeted radiotherapy with (90)Y or (177)Lu. We synthesized a DOTA-neurotensin analogue series. Two of these peptides bear two sequence modifications for metabolic stability: DOTA-NT-20.3 shares the same peptide sequence as the previously described DTPA-NT-20.3. In the sequence of DOTA-NT-20.4, the Arg(8)-Arg(9) bond was N-methylated instead of the Pro(7)-Arg(8) bond in DOTA-NT-20.3. An additional sequence modification was introduced in DOTA-LB119 to increase stability. A spacer was added between DOTA and the peptide sequence to increase affinity. Binding to HT29 cells, which express NTSR1, in vivo stability, and biodistribution of the various analogues were compared, and the best candidate was used to image tumors of various sizes with the microPET in mice. (111)In-DOTA-NT-20.3, in spite of a relatively high uptake in kidneys, showed specific tumor uptake and elevated tumor to other organ uptake ratios. High contrast images were obtained at early time points after injection that allowed tumor detection at a time interval postinjection appropriate for imaging with the short-lived radionuclide (68)Ga. (111)In-DOTA-NT-20.4 displayed inferior binding to HT29 cells and reduced tumor uptake. (111)In-DOTA-LB119 displayed at early time points a significantly lower renal uptake but also a lower tumor uptake than (111)In-DOTA-NT-20.3, although binding to HT29 cells was similar. (68)Ga-DOTA-NT-20.3 displayed higher tumor uptake than (68)Ga-DOTA-LB119 and allowed the detection of very small tumors by PET. In conclusion, DOTA-NT-20.3 is a promising candidate for (68)Ga-PET imaging of neurotensin receptor-positive tumors. DOTA-NT-20.3 may also be considered for therapy, as the yttrium-labeled peptide has higher affinity than that of the indium-labeled one. A prerequisite for therapeutic application of this neurotensin analogue would be to lower kidney uptake, for example, by infusion of basic amino acids, gelofusin, or albumin fragments, to prevent nephrotoxicity, as with radiolabeled somatostatin analogues.
The overexpression of Bombesin (BBS) receptors on a variety of human cancers make them interesting targets for tumor imaging and therapy. Analogues of the neuropeptide BBS have been functionalized with the (NalphaHis)- chelator for labeling with the 99mTc-tricarbonyl core. The introduction of a betaAla-betaAla linker between the stabilized BBS binding sequence and the chelator led to increased tumor uptake but still rather unfavorable in ViVo properties. Novel polar linkers, with different charge, have been introduced in the molecule and tested for their influence on the biodistribution. The new analogues showed a shift in hydrophilicity from a Log D=0.9 to Log D values between 0.4 and -2.2. All compounds kept the increased stability in both human plasma (t(1/2)>16 h) and in tumor cells (t(1/2)=30-40 min). The compounds with Log D values between +1 and -1 showed the highest binding affinities with Kd values of <0.5 nM, as well as the highest cellular uptake. However, higher hydrophilicity (Log D < -1.8) led to lower affinity and a substantial decrease of internalization. The introduction of a positive charge (beta3hLys) resulted in unfavorable biodistribution, with increased kidney uptake. The introduction of an uncharged hydroxyl group (beta3hSer) improved the biodistribution, resulting in significantly better tumor-to-tissue ratios. The compound with one single negative charge (beta3hGlu) showed a significant increase in the tumor uptake (2.1+/-0.6% vs 0.80+/-0.35% ID/g in comparison to the betaAla-betaAla analogue) and also significantly higher tumor-to-tissue ratios. The specificity of the in ViVo uptake was confirmed by coinjection with natural BBS. Moreover, the analogue provided a much clearer image of the tumor xenografts in the SPECT/CT studies. The introduction of a single negative charge may be useful in the development of new BBS analogues to obtain an improved biodistribution profile, with increased tumor uptake and better imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.