Color Doppler vascular index (VI) was assessed alone and in combination with grey-scale ultrasound (GSU) in regionally subdivided thyroid nodules in diagnosing thyroid cancer. Color Doppler sonograms of 111 thyroid nodules were evaluated by a home-developed algorithm that performed “offsetting” (algorithm for changing the area of a region of interest, ROI, without distorting the ROI’s contour) and assessed peripheral, central and overall VI of thyroid nodules. Results showed that the optimum offset for dividing peripheral and central regions of nodule was 22%. At the optimum offset, the mean VI of peripheral, central, and overall regions of malignant nodules were significantly higher than those of benign nodules (26.5 ± 16.2%, 21.7 ± 19.6%, 23.8 ± 4.6% v/s 18.2 ± 16.7%, 11.9 ± 15.1% and 16.6 ± 1.8% respectively, P < 0.05). The optimum cut-off of peripheral, central, and overall VI was 19.7%, 9.1% and 20.2% respectively. When compared to GSU alone, combination of VI assessment with GSU evaluation of thyroid nodules increased the diagnostic accuracy from 58.6% to 79.3% (P < 0.05). In conclusion, a novel algorithm for regional subdivision and quantification of thyroid nodular VI in ultrasound images was established, and the optimum offset and cut-off were derived. Assessment of intranodular VI in conjunction with GSU can increase the accuracy in ultrasound diagnosis of thyroid cancer.
Shear wave elastography provides information about the stiffness of thyroid nodules that could be a new indicator of malignancy. The current study aimed to investigate the feasibility of using shear wave elastography (SWE) alone and in conjunction with grey scale ultrasound (GSU) to predict malignancy in 111 solitary thyroid nodules. Malignant thyroid nodules tended to have microcalcification, hypoechogenicity, tall to width ratio >1, and irregular borders (p < 0.05). SWE indices (E maximum and E mean ) of malignant nodules (median ± standard error: 85.2 ± 8.1 kPa and 26.6 ± 2.5 kPa) were significantly higher than those of benign nodules (median ± standard error: 50.3 ± 3.1 kPa and 20.2 ± 1 kPa) (p < 0.05). The optimal cut-off of E maximum and E mean for distinguishing benign and malignant nodules was 67.3 kPa and 23.1 kPa, respectively. Diagnostic performances for GSU + E maximum , GSU + E mean , GSU, E maximum and E mean were: 70. 4%, 74.1%, 96.3%, 70.4% and 74.1% for sensitivity, 83.3%, 79.8%, 46.4%, 70.2%, and 66.7% for specificity, and 80.2%, 78.4%, 58.5%, 70.3%, and 68.5% for accuracy, respectively. Our results suggested that combining GSU with SWE (using E maximum or E mean ) increased the overall diagnostic accuracy in distinguishing benign and malignant thyroid nodules.
No abstract
Purpose The current study investigated the therapeutic potential of transcranial direct current stimulation (tDCS) on speech intelligibility, speech-related physiological and vocal functions among post-stroke dysarthric patients. Method Nine chronic post-stroke dysarthric patients were randomly assigned to the stimulation or sham group. The stimulation group received 2mA of anodal tDCS over the left inferior primary motor cortex for 15 minutes, while the sham group received 30s of stimulation under the same settings. All the participants received 10 daily 15 minutes of individualized speech therapy targeting their dominant phonological process or phonemes with the greatest difficulty. The outcome measures included (1) perceptual analysis of single words, passage reading and diadochokinetic rate, (2) acoustic analysis of a sustained vowel, and (3) kinematic analysis of rapid syllable repetitions and syllable production in sentence, conducted before and after the treatment. Results The results revealed that both the stimulation and sham groups had improved perceptual speech intelligibility at the word level, reduced short rushes of speech during passage reading, improved rate during alternating motion rate, AMR-kha1, and improved articulatory kinematics in AMR-tha1 and syllables /tha1/ and /kha1/ production in sentence. Compared to the sham group, the stimulation group showed significant improvement in articulatory kinematics in AMR-kha1 and syllable /kha1/ production in sentence. The findings also showed that anodal stimulation led to reduced shimmer value in sustained vowel /a/ phonation, positive changes in articulatory kinematics in AMR-tha1 and syllables /pha1/ and /kha1/ production in sentence at the post treatment measure. In addition to positive effects on articulatory control, reduced perturbation of voice amplitude documented in the stimulation group post treatment suggests possible tDCS effects on the vocal function. Conclusions The current study documented the beneficial effects of anodal tDCS over the primary motor cortex on speech production and suggested that combined tDCS and speech therapy may promote recovery from post-stroke dysarthria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.