Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.
The present study aimed to evaluate the immunopotentiating effect of plant-derived soyasaponin and its immunogenicity in chickens challenged with Newcastle disease virus ( NDV ). Soyasaponin was extracted from soybean seeds and detected using the phytochemical tests, followed by quantification through the dry-weight method. One-day-old broiler chicks (n = 90) were divided into 3 groups, named as A, B, and C. Group A birds were orally administrated with soyasaponin (5 mg/kg), followed by immunization with inactivated ND vaccine intramuscularly ( IM ), whereas group B birds were vaccinated with inactivated ND vaccine alone. Group C birds were kept unvaccinated. A booster dose on day 21 was also administered IM to group A and B birds. At day 35, all 3 groups were challenged with NDV. To determine the immunogenicity potential of soyasaponin, antibody titer was measured using the hemagglutination inhibition test before and after the NDV challenge. Histochemical examination was performed to determine the pathological changes associated with NDV infection. Foam formation and hemolytic activity confirmed the presence of saponin in soya bean extract. Group A birds showed a higher antibody response compared with group B and C birds. The disease challenge study showed that soyasaponin-adjuvanted NDV vaccine provided complete protection to group A birds against ND. Moreover, no side effects of soyasaponin were observed on the growth performance of birds during the experiment. Therefore, we can conclude that soyasaponin is a potential immunogenic agent and therefore could be a promising candidate to launch a protective humoral response against ND in chickens.
Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. Besides vaccination, there is a burgeoning demand for new antivirals for use in interventions to control ND. One strategy is to strengthen the host innate immunity via host-derived innate immune proteins. Type I interferons define one of the first lines of innate immune defense against viral infections. Chicken interferon alpha (chIFN-α) is one of the potent cytokines that trigger antiviral responses. In the current study, we investigated the therapeutic effect of natural chIFN-α administered via oral and intramuscular (i.m.) routes against ND in broiler chickens. Our results showed that the level of protection against ND in response to chIFN-α therapy was dependent on the route and dose of IFN administration. A better therapeutic effect was observed in chickens treated with chIFN-α via the oral route than in those treated via the i.m. route. Regardless of the administration route, double-dose chIFN-α (2,000-U) treatments provided better protection than single-dose (1,000-U) treatments. However, complete protection against ND was achieved in birds treated with repeated doses of chIFN-α via the oral route. Histopathology of trachea, proventriculus, spleen, and liver showed a significant improvement in ND-induced degenerative changes in double-dose IFN-treatment groups compared to single-dose groups. Results of the hemagglutination test demonstrated a decrease in ND virus (NDV) titer in IFN-treated groups. Also, double doses of chIFN-α via oral route resulted in early recovery in weight gain. We propose that chIFN-α therapy via oral route could be an important therapeutic tool to control NDV infection in chicken. IMPORTANCE Newcastle disease (ND) is an economically important contagious disease of wild and domestic birds worldwide. The disease causes severe economic losses in terms of production due to high mortality and morbidity in nonvaccinated chickens. Despite extensive vaccination approaches, Newcastle disease (ND) remains a permanent threat to the poultry industry worldwide. In the current study, we used natural chicken IFN-α as an innate immune modulator to counteract ND in chickens. We report that chIFN-α is effective in protecting the chickens against ND and also prevents shedding of the virus, which can then prevent further spread of the disease. We propose that in addition to vaccination, chIFN-α therapy could be an effective option for controlling ND in areas of endemicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.