Among tetrapods, the current record holder for shortest lifespan is Labord's chameleon, Furcifer labordi. These reptiles from the arid southwest of Madagascar have a reported lifespan of 4-5 months during the annual rainy season and spend the majority of their life (8-9 months) as a developing embryo. This semelparous, annual life history is unique among tetrapods, but only one population (Ranobe) in the southernmost distribution range has been studied. We therefore investigated the potential for environmentally-dependent variability in lifespan in a population in Kirindy Forest, which has a much longer warm rainy season. While no adults were found after March in Ranobe, the disappearance of adults was delayed by several months in Kirindy. Our data also revealed sex-biased mortality, suggesting that females have a longevity advantage. Furthermore, we found that, after an unusually long previous rainy season, one female was capable of surviving until a second breeding season. Keeping F. labordi in cages under ambient conditions demonstrated that also males can also survive until the next season of activity under these conditions. Our study therefore revealed considerable variability in the extreme life history of this tetrapod that is linked to variation in ecological factors.The fast-slow continuum is the dominant axis of life-history variation in tetrapods. Fast-living species are characterized by fast growth, high reproductive rates, high aging rates and short lifespans, compared to their slow-living counterparts [1][2][3] . Among tetrapods, the most extreme example for short lifespan is provided by Labord's chameleon, Furcifer labordi. During their study in the arid southwest of Madagascar in Ranobe, Karsten et al. 4 reported synchronous hatching of F. labordi with the onset of the annual rainy season in November. Here, early life of this chameleon is characterized by fast growth, resulting in sexual maturity at less than two months of age. After mating, senescent decline becomes apparent, and by the end of the rainy season in March, a population wide die-off of both sexes occurs. Thus, with an incubation period of 8-9 month, F. labordi spend the majority of their lifetime as a developing embryo in the egg, probably as an adaption to the highly seasonal climate. High adult mortality combined with relatively high juvenile survival might have ultimately selected for this semelparous, annual life history 5,6 . Semelparity, the strategy to invest in only one mating event, is rare among tetrapods, including a few small-sized marsupial species from the families Didelphidae and Dasyuridae. However, in these marsupials the die-off following the mating season is restricted to males, while some females survive to breed a second time 7 . Strong prey seasonality leading to a short breeding season has been proposed to explain obligate male semelparity in these marsupials 8 . Interestingly, males that were captured before the mating season and prevented from competing for mates survived for more than two years 9,10 . Less ...
We conducted a comprehensive molecular phylogenetic study for a group of chameleons from Madagascar (Chamaeleonidae: Calumma nasutum group, comprising seven nominal species) to examine the genetic and species diversity in this widespread genus. Based on DNA sequences of the mitochondrial gene (ND2) from 215 specimens, we reconstructed the phylogeny using a Bayesian approach. Our results show deep divergences among several unnamed mitochondrial lineages that are difficult to identify morphologically. We evaluated lineage diversification using a number of statistical phylogenetic methods (general mixed Yule-coalescent model; SpeciesIdentifier; net p-distances) to objectively delimit lineages that we here consider as operational taxonomic units (OTUs), and for which the taxonomic status remains largely unknown. In addition, we compared molecular and morphological differentiation in detail for one particularly diverse clade (the C. boettgeri complex) from northern Madagascar. To assess the species boundaries within this group we used an integrative taxonomic approach, combining evidence from two independent molecular markers (ND2 and CMOS), together with genital and other external morphological characters, and conclude that some of the newly discovered OTUs are separate species (confirmed candidate species, CCS), while others should best be considered as deep conspecific lineages (DCLs). Our analysis supports a total of 33 OTUs, of which seven correspond to described species, suggesting that the taxonomy of the C. nasutum group is in need of revision.
The life histories and population dynamics of chameleons remain poorly known, most likely due to practical challenges related to their cryptic nature. However, several studies have indicated that some of these reptiles have unusually brief life histories. Specifically, one Madagascan chameleon (Furcifer labordi) was found to have an annual life cycle characterized by population-wide survival of the austral winter in the egg stage; a unique life history among tetrapods. In this study, we compare the life history of F. labordi with two locally sympatric congeners (F. cf. nicosiai and F. oustaleti) in Kirindy forest, western Madagascar, to determine how these species adjust their life histories to a highly seasonal and unpredictable climate. We found differences in lifespan, timing of hatching, growth rates, survival, reproductive rates, adult body size, and roosting heights among all three species. Moreover, two species exhibited relatively short lifespans: 6-9 months in F. labordi and 16-18 months in F. cf. nicosiai. In contrast, F. oustaleti is perennial and large-sized juveniles and adults aestivate during the dry season, but survival rates of adults seemed relatively low. Strikingly, the annual cohort of F. labordi was already adult when hatchlings of F. oustaleti and subsequently F. cf. nicosiai emerged. Our study suggests the co-existence of three different life histories with seasonal adjustment that might be related to the partitioning of overall food availability and contributes valuable life history data on enigmatic chameleon species.
Background Life history theory predicts that during the lifespan of an organism, resources are allocated to either growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of different life history strategies and define an organisms’ position along a fast–slow continuum in interspecific comparisons. Labord’s chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with the shortest reported lifespan (4–9 months). Previous investigations revealed that their lifespan is to some degree dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. However, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions. Results We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. labordi already exhibited relatively short telomeres during the mating season when they were 3–4 months old, and telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild counterparts. Conclusion We suggest that environmental stress and the corresponding accelerated telomere attrition have profound effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their relatively early senescence and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.