Iterative clipping and filtering (ICF) is a useful technique to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, the classical ICF with Fast Fourier Transform/Inverse Fast Fourier Transform requires much iteration to approach a specified PAPR threshold in the complementary cumulative distribution function. To reduce the nonlinear distortion in both electrical and optical devices and in the optical fiber, we propose a novel ICF based on discrete cosine transform/inverse discrete cosine transform to reduce the PAPR in an intensity modulator and direct detection (IM/ DD) optical OFDM system. Furthermore, the new technique considerably improves bit error rate (BER) and reduces the PAPR with just few iterations. The experimental results show that the receiver sensitivity at a BER of 1 × 10 −3 for a 2.5-Gbytes∕s OFDM signal and after 200-km standard single-mode fiber transmission has been improved by 1.1, 2.3, and 3.6 dBm with launch powers of 6, 8, and 12 dBm respectively. Subject terms: iterative clipping and filtering; peak-to-power ratio; discrete cosine transformation/inverse discrete cosine transformation; intensity modulator and direct detection.
To improve the performance of optical fiber transmission and to compensate the fiber chromatic dispersion (CD), we propose to use fiber Bragg grating (FBG) in intensity modulator/direct detection IM/DD optical orthogonal frequency division multiplexing (OOFDM) system, and experimentally demonstrate 2.5-Gbit/s QPSK-OFDM transmission over 200 km SMF-28. FBG used before the detection as a chromatic dispersion compensation module, reducing the beating noise between ASE noise and OFDM signal. By using the FBG in IM/DD OOFDM system, our experimental results show that the receiver sensitivity was improved about 2 dB at a bit error rate (BER) of$1 \times {10^{ - 3}}$for 2.5 Gbit/s QPSK-OFDM signals after 200 km SMF-transmission compared to regular system without FBG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.