Efficient water electrolyzers are constrained by the lack of low-cost and earth-abundant hydrogen evolution reaction (HER) catalysts that can operate at industry-level conditions and be prepared with a facile process. Here we report a self-standing MoC–Mo2C catalytic electrode prepared via a one-step electro-carbiding approach using CO2 as the feedstock. The outstanding HER performances of the MoC–Mo2C electrode with low overpotentials at 500 mA cm−2 in both acidic (256 mV) and alkaline electrolytes (292 mV), long-lasting lifetime of over 2400 h (100 d), and high-temperature performance (70 oC) are due to the self-standing hydrophilic porous surface, intrinsic mechanical strength and self-grown MoC (001)–Mo2C (101) heterojunctions that have a ΔGH* value of −0.13 eV in acidic condition, and the energy barrier of 1.15 eV for water dissociation in alkaline solution. The preparation of a large electrode (3 cm × 11.5 cm) demonstrates the possibility of scaling up this process to prepare various carbide electrodes with rationally designed structures, tunable compositions, and favorable properties.
Thienodolin (THN) features a tricyclic indole-S-hetero scaffold that encompasses two unique carbon-sulfur bonds. Although its biosynthetic gene cluster has been recently identified in Streptomyces albogriseolus, the essential enzymes for the formation of C-S bonds have been relatively unexplored. Here, we isolated and characterized a new biosynthetic gene cluster from Streptomyces sp. FXJ1.172. Heterologous expression, systematic gene inactivation, and in vitro biochemical characterization enable us to determine the minimum set of genes for THN synthesis, and an aminotransferase (ThnJ) for catalyzing the downstream conversion of tryptophan chlorination. In addition, we evaluated (and mainly excluded) a previously assumed pivotal intermediate by feeding experiments. With these results, we narrowed down four enzymes (ThnC-F) that are responsible for the two unprecedented C-S bond formations. Our study provides a solid basis for further unraveling of the unique C-S mechanisms.
The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p < 0.05) higher contents of total phenolic, total flavonoid and resveratrol, and antioxidant activity of mulberry juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.