Metagenome of gut microbes has been implicated in metabolism, immunity, and health maintenance of its host. However, in most of previous studies, the microbiota was sampled from feces instead of gastrointestinal (GI) tract. In this study, we compared the microbial populations from feces at four different developmental stages and contents of four intestinal segments at maturity to examine the dynamic shift of microbiota in pigs and investigated whether adult porcine fecal samples could be used to represent samples of the GI tract. Analysis results revealed that the ratio of Firmicutes to Bacteroidetes from the feces of the older pigs (2-, 3-, 6- month) were 10 times higher compared to those from piglets (1-month). As the pigs matured, so did it seem that the composition of microbiome became more stable in feces. In adult pigs, there were significant differences in microbial profiles between the contents of the small intestine and large intestine. The dominant genera in the small intestine belonged to aerobe or facultative anaerobe categories, whereas the main genera in the large intestine were all anaerobes. Compared to the GI tract, the composition of microbiome was quite different in feces. The microbial profile in large intestine was more similar to feces than those in the small intestine, with the similarity of 0.75 and 0.38 on average, respectively. Microbial functions, predicted by metagenome profiles, showed the enrichment associated with metabolism pathway and metabolic disease in large intestine and feces while higher abundance of infectious disease, immune function disease, and cancer in small intestine. Fecal microbes also showed enriched function in metabolic pathways compared to microbes from pooled gut contents. Our study extended the understanding of dynamic shift of gut microbes during pig growth and also characterized the profiles of bacterial communities across GI tracts of mature pigs.
Temporomandibular joint disorder (TMJD) is known for its mastication-associated pain. TMJD is medically relevant because of its prevalence, severity, chronicity, and “therapy-refractoriness” of its pain, and its largely elusive pathogenesis. Against this background we sought to investigate pathogenetic contributions of the calcium-permeable TRPV4 ion channel, robustly expressed in the trigeminal ganglion sensory neurons, to TMJ inflammation and pain behavior. We demonstrate here that TRPV4 is critical for TMJ-inflammation evoked pain behavior in mice, and that trigeminal ganglion pro-nociceptive changes are Trpv4-dependent. As a quantitative metric, bite force was recorded as evidence of masticatory sensitization, in keeping with human translational studies. In Trpv4−/− mice with TMJ-inflammation, attenuation of bite force was significantly less than in WT mice. Similar effects were seen with systemic application of a specific TRPV4 inhibitor. TMJ-inflammation and mandibular bony changes were apparent after CFA injections, but remarkably independent of Trpv4 genotype. Intriguingly, as a result of TMJ-inflammation, WT mice exhibited significant up-regulation of TRPV4 and phosphorylated ERK in TMJ-innervating trigeminal sensory neurons, absent in Trpv4−/− mice. Mice with genetically-impaired MEK/ERK phosphorylation in neurons showed a similar resistance to reduction of bite-force as Trpv4−/− mice. Thus, TRPV4 is necessary for masticatory sensitization in TMJ-inflammation, and likely functions up-stream of MEK/ERK phosphorylation in trigeminal ganglion sensory neurons in-vivo. TRPV4 therefore represents a novel pro-nociceptive target in TMJ inflammation, and should be considered a target-of-interest in human TMJD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.