With the increase of mining depth, rockbursts have become important safety problems in Zhazixi Antimony Mine, where overlying strata exceed 560 m. Due to the small spacing between the steeply inclined veins, mining activities have great influences on rockbursts of adjacent veins. In order to study rockburst characteristics and mechanisms in Zhazixi Antimony Mine, in situ measurement, field geological survey, uniaxial compression tests, and numerical simulation are conducted to analyze rockburst proneness and simulate the elastic strain energy accumulation characteristics. Consequently, rockburst proneness criteria are established on the basis of experimental results to propose the necessary lithologic conditions for rockburst aiming to Zhazixi Antimony Mine. Rockburst dangerous districts are defined based on high stress concentration and elastic strain energy distribution characteristics in mining process obtained by theory analysis and numerical simulation. Accordingly, it is suggested that thrown-type rockbursts mainly occur in massive stibnite of ventilation shafts and stopes where the elastic strain energy exceeds 300 kJ·m−3, spalling-type rockbursts generally appear in slate of roadways where the elastic strain energy exceeds 100 kJ·m−3, and ejection-type rockbursts arise in different rock masses under a certain condition. Last but not the least, prediction results are basically consistent with statistics data of rockburst events after comparative analysis.
Karst rocky desertification (KRD) is a global environmental degradation problem caused by human activities and vegetation deterioration. Vegetation restoration in KRD is very difficult due to severe water loss, soil erosion and extensive bare bedrock. For achieving vegetation restoration on bare bedrock areas of KRD, the nutrient medium technique was developed, which is based on the special hydrogeological conditions that is seasonal rainfall is abundant in Karst region of Southwest China and limestone fissures are extremely developed and rich in fissure water. The objective of this research is to investigate the feasibility of using nutrient medium technique to achieve vegetation restoration in KRD region. Through the indoor and field experiments, some properties of the nutrient medium mixture were tested, including water retention, water absorption and nutrient retention. The results showed that the moisture content on the 75th day and water absorption rate of No.2 mixture was 19.9% and 1.67 mm/d, respectively, which could be used as optimum mix ratio for producing nutrient medium. The field results showed that the nutrient medium technique could effectively guarantee the survival of sapling at early age and sustainable growth at later age in the field, and the nutrient medium had less nutrient loss. This novel approach can retain and absorb moisture, and saplings do not need artificially supply water and fertiliser in the dry season, and the use of nutrient medium technique to achieve vegetation restoration in KRD region seems to be a feasible option.
Parking plays an essential role in urban mobility systems across the globe, especially in metropolises. Hong Kong is a global financial center, international shipping hub, fast-growing tourism city, and major aviation hub, and it thus has a high demand for parking. As one of the initiatives for smart city development, the Hong Kong government has already taken action to install new on-street parking meters and release real-time parking occupancy information to the public. The data have been released for months, yet, to the best of our knowledge, there has been no study analyzing the data and identifying their unique characteristics for Hong Kong. In view of this, we examined the spatio-temporal patterns of on-street parking in Hong Kong using the data from the new meters. We integrate the t-SNE and k-means methods to simultaneously visualize and cluster the parking occupancy data. We found that the average on-street parking occupancy in Hong Kong is over 80% throughout the day, and three parking patterns are consistently identified by direct data visualization and clustering results. Additionally, the parking patterns in Hong Kong can be explained using land-use factors. Overall, this study can help the government better understand the unique characteristics of on-street parking and develop smart management strategies for Hong Kong.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.