PurposeColon cancer (CC) is a serious disease burden. The prognosis of patients with CC is different, so looking for effective biomarkers to predict prognosis is vitally important. Ferroptosis is a promising therapeutic and diagnosis strategy in CC. However, the role of ferroptosis in prognosis of CC has not been studied. The aim of the study is to build a prognosis model related ferroptosis, and provide clues for further therapy of CC.MethodsThe RNA-seq data were from TCGA (training group) and GEO (testing group). The R language and Perl language were used to process and analyze data. LASSO regression analysis was used to build the prognosis model. ssGSEA was used to compare the immune status between two groups. Immunohistochemistry was used to detect expression of AKR1C1 and CARS1 in colon cancer tissues and adjacent tissues.ResultsThe prognosis model consisted of five ferroptosis related genes (AKR1C1, ALOX12, FDFT1, ATP5MC3, and CARS1). The area under curve (AUC) at 1-, 2-, and 3-year were 0.668, 0.678, and 0.686, respectively. The high- and low-risk patients had significant survival probability and could be clearly distinguished by the PCA and t-SNE analysis. The multivariate cox regression analysis also showed the riskscore is an independent prognosis factor. Importantly, we found that the immune status between high- and low-risk patients were different obviously, such as CD8+T cells. And STING, a new promising immune target, was also correlated to our signature genes statistically significantly.ConclusionOur ferroptosis prognosis signature could predict survival of CC patients to a certain degree. And the crosstalk between ferroptosis and immune, especially STING need further studies.
The application of rapid and accurate diagnostic methods can improve colorectal cancer (CRC) survival rates dramatically. Here, we used a non-targeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry (iEESI-MS) to detect metabolite ions associated with the progression of CRC from 172 tissues (45 stage I/II CRC, 41 stage III/IV CRC, and 86 well-matched normal tissues). A support vector machine (SVM) model based on 10 differential metabolite ions for differentiating early-stage CRC from normal tissues was built with a good prediction accuracy of 92.6%. The biomarker panel consisting of lysophosphatidylcholine (LPC) (18:0) has good diagnostic potential in differentiating early-stage CRC from advanced-stage CRC. We showed that the down-regulation of LPC (18:0) in tumor tissues is associated with CRC progression and related to the regulation of the epidermal growth factor receptor. Pathway analysis showed that metabolic pathways in CRC are related to glycerophospholipid metabolism and purine metabolism. In conclusion, we built an SVM model with good performance to distinguish between early-stage CRC and normal groups based on iEESI-MS and found that LPC (18:0) is associated with the progression of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.