Accurate state-of-charge (SOC) estimation is critical for driving range prediction of electric vehicles and optimal charge control of batteries. In this paper, a stacked long short-term memory network is proposed to model the complex dynamics of lithium iron phosphate batteries and infer battery SOC from current, voltage, and temperature measurements. The proposed network is trained and tested using data collected from the dynamic stress test, US06 test, and federal urban driving schedule. The performance on SOC estimation is evaluated regarding tracking accuracy, computation time, robustness against unknown initial states, and compared with results from the model-based filtering approach (unscented Kalman filter). Moreover, different training and testing data sets are constructed to test its robustness against varying loading profiles. The experimental results show that the proposed network well captures the nonlinear correlation between SOC and measurable signals and provides better tracking performance than the unscented Kalman filter. In case of inaccurate initial SOCs, the proposed network presents quick convergence to the true SOC, with root mean square errors within 2% and mean average errors within 1%. Moreover, the estimation time at each time step is sub-millisecond, making it appropriate for real-time applications. INDEX TERMS State-of-charge estimation, lithium iron phosphate batteries, long short-term memory, recurrent neural network, unscented Kalman filter.
For most deep learning practitioners, recurrent networks are often used for sequence modeling. However, recent researches indicate that convolutional architectures may be used to optimize recurrent networks on some machine translation tasks. Problems here are which architecture we should use for a new sequence modeling. By integrating and systematically evaluating the general convolution and recurrent architecture used for sequence modeling, a convolution gated recurrent unit (CNN-GRU) network is proposed for the state-of-charge (SOC) estimation of lithium-ion batteries in this paper. Deep-learning models are well suited for SOC estimation because a battery management system is time-varying and nonlinear. The CNN-GRU model is trained using data collected from the battery-discharging processes, such as the dynamic stress test and the federal urban driving schedule. The experimental results show that the proposed method can achieve higher estimation accuracy than two commonly used deep learning models (recurrent neural network and gated recurrent unit) and two traditional machine learning approaches (support vector machine and extreme learning machine) for SOC estimation of lithium-ion batteries.INDEX TERMS State-of-charge estimation, convolutional gated recurrent unit, lithium-ion battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.