Hyperleptinemia is a common feature of obese women who have a higher risk of endometrial cancer than women with normal weights, and epidemiologic studies have suggested a correlation between obesity and endometrial carcinoma. Therefore, understanding of the molecular mechanism involved in leptin signaling transduction is important in endometrial cancer prevention and treatment. In this study, both isoforms of the leptin receptor (Ob-R), the long form (Ob-Rb) and short form (Ob-Ra), were detected as being expressed in six endometrial cancer cell lines with various differentiation status by western blotting, and Ob-Ra was found to be more abundant than Ob-Rb in these cells. Moreover, the expressions of both isoforms were inversely correlated with histoprognostic grading. We also showed that leptin stimulated cell proliferation
BackgroundMirk/Dyrk1B contributes to G0 arrest by destabilization of cyclin D1 and stabilization of p27kip1 to maintain the viability of quiescent human cancer cells, and it could be negatively regulated by mitogenic-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. This study was performed to investigate the effect of Mirk/Dyrk1B on cell cycle and survival of human cancer cells involving MAPK/ERK signaling.MethodsThe correlations between Mirk/Dyrk1B expression and active ERK1/2 detected by western blot in both ovarian cancer and non-small cell lung cancer (NSCLC) cells were analyzed by simple regression. Mirk/Dyrk1B unique phosphopeptides with sites associated with Mirk/Dyrk1B protein were isolated and quantitated by liquid chromatography coupled to tandem mass/mass spectrometry (LC-MS/MS) proteomics analysis. The human cancer cells were treated with small interfering RNAs (siRNAs) and/or U0126, an inhibitor of MEK for indicated duration, followed by investigating the alterations of cell cycle and apoptosis as well as related proteins examined by flow cytometry and Western blot, respectively.ResultsOur study demonstrated the widely expressed Mirk/Dyrk1B proteins in the human cancer cells were positively correlated with the levels of activated ERK1/2. Moreover, Mirk/Dyrk1B protein expressions consistent with the tyrosine autophosphorylated levels in the human cancer cells were increased by U0126 or growth factor-depleted culture. Conversely, knockdown of Mirk/Dyrk1B by siRNA led to up-regulated activation of c-Raf-MEK-ERK1/2 pathway and subsequent changes in cell cycle proteins (cyclin D1, p27kip1), accompanied by increased growth rate and cells from G0/G1 into S of cell cycle which could be blocked by U0126 in a dose-dependent manner, indicating Mirk/Dyrk1B may sequester MAPK/ERK pathway, and vice versa. Whereas, combined Mirk siRNA and U0126 induced cell apoptosis in the human cancer cells.ConclusionsThese data together show that Mirk/Dyrk1B mediates cell cycle and survival via interacting with MAPK/ERK signals and simultaneous inhibition of both pathways may be a novel therapeutic target for human cancer.
The mortality rate of ovarian cancer is the highest of all gynecological malignancies. Telmisartan is a commonly used clinical angiotensin receptor blocker, which has antihypertensive, anti‑inflammatory and antithrombotic effects. In the present study, it was investigated whether telmisartan could exert anticancer effects on ovarian cancer cells through upregulating peroxisome proliferator‑activated receptor γ (PPARγ) and downregulating matrix metalloproteinase‑9 (MMP‑9) expression. A 3.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to analyze the proliferation of HEY cells. A Caspase‑3 Activity Assay kit and an Annexin V‑fluorescein isothiocyanate/propidium iodide kit were used to analyze the apoptosis of HEY cells. In addition, a gelatin zymography assay and reverse trancription‑quantitative polymerase chain reaction were included to analyze the expression of PPARγ and MMP‑9 in HEY cells. The data showed that telmisartan could significantly decrease cell viability and induce the apoptosis of HEY cells in a time‑ and dose‑dependent manner. Furthermore, telmisartan could also dose‑dependently increase the expression of PPARγ and decrease the expression of MMP‑9 in HEY cells. In addition, downregulation of the expression of PPARγ by small interfering (si)RNA could reduce the effect of telmisartan on ovarian cancer cells and increase the expression of MMP‑9. In conclusion, the results indicated that telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells by upregulating PPARγ and downregulating MMP‑9 expression.
OVCA1, a tumor suppressor gene, is deleted or lower expressed in about 80% of ovarian cancer. Over expression of OVCA1 in human ovarian cancer A2780 cells inhibits cell proliferation and arrests cells in G1 stage. However, the fact that the molecular mechanism of OVCA1 inhibits cell growth is presently elusive. Here we investigated the potential signaling pathway induced by over-expression of OVCA1. Our results show that over-expression of human OVCA1 in ovarian cancer cells A2780 leads to down-regulation of cyclin D1, and up-regulation of p16, but no effect on the expression of NF-κB. It indicates that OVCA1 could inhibit the proliferation of ovarian cancer cell A2780 by p16/cyclin D1 pathway, but not by NF-κB.
For successful implantation, endometrial receptivity must be established. The high expression of CDC20 in many kinds of malignant tumours has been reported, and it is related to the occurrence and development of tumours. According to these functions, we think that CDC20 may also play important roles in the process of embryo implantation. To prove our hypothesis, we observed the distribution and expression of CDC20 in mouse and human early pregnancy. The effect of E2 and/or P4 on the expression of CDC20 in human endometrial cells was detected by Western blot. To further explore whether CDC20 is an important factor in adhesion and proliferation. The results showed that the expression of CDC20 in the uterus and menstrual cycle of early pregnant mice was spatiotemporal. E2 can promote the expression of CDC20. On the contrary, P4 and E2 + P4 inhibited the expression of CDC20. We also detected the proliferation and adhesion of human endometrial cells. We found that the inhibition of CDC20 with its inhibitor Apcin could reduce the adhesion rate and proliferation ability to RL95‐2 and HEC‐1A cells, respectively. Inhibiting CDC20 by Apcin could interfere the embryo implantation of mouse. It is suggested that CDC20 may play an important role in the process of embryo implantation. Significance of the study Embryo implantation is an extremely complex and delicate process, including identification, localisation, adhesion and invasion between embryo and endometrium. Studies have shown the process of embryo implantation is very similar to that of tumour invasion. CDC20 is a cancer‐promoting factor. We found CDC20 is spatially and spatially expressed in mouse and human menstrual cycles and is regulated by oestrogen and progesterone. Apcin can inhibit the adhesion of JAR cells and embryo implantation of mouse. CDC20 may provide a new way to improve the success rate of assisted reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.