Increasing evidence indicates that the oncoprotein murine double minute (MDM2) binding protein (MTBP) can be considered a pro-oncogene of human malignancies; however, its function and mechanisms in hepatocellular carcinoma (HCC) are still not clear. In the present work, our results demonstrate that MTBP could function as a co-activator of transcription factor E26 transformation-specific sequence (ETS-1), which plays an important role in HCC cell proliferation and/or metastasis and promotes proliferation of HCC cells. Using luciferase and real-time polymerase chain reaction (qPCR) assays, MTBP was found to enhance the transcription factor activation of ETS-1. The results from chromatin co-immunoprecipitation showed that MTBP enhanced the recruitment of ETS-1 to its downstream gene’s (mmp1’s) promoter region with ETS-1 binding sites. In cellular and nude mice models, overexpression of MTBP was shown to promote the proliferation of MHCC97-L cells with low endogenous MTBP levels, whereas the knockdown of MTBP led to inhibition of the proliferation of MHCC97-H cells that possessed high endogenous levels of MTBP. The effect of MTBP on ETS-1 was confirmed in the clinical specimens; the expression of MTBP was positively correlated with the downstream genes of ETS-1, mmp3, mmp9, and uPA. Therefore, by establishing the role of MTBP as a novel co-activator of ETS-1, this work expands our knowledge of MTBP or ETS-1 and helps to provide new ideas concerning HCC-related research.
The pregnane X receptor (PXR) is an important regulator of hepatocellular carcinoma cellular resistance to antitumor drugs. Activation of PXR was modulated by the co-regulators. The target protein for the Xenopus plus end-directed kinesin-like protein (Xklp2) known as TPX2 that was previously considered as a tubulin regulator, also functions as the regulator of some transcription factors and pro-oncogenes in human malignances. However, the actions of TPX2 on PXR and HCC cells are still unclear. In the present study, our results demonstrate that the high expression of endogenous mRNA level of TPX2 not only correlated with the poor prognosis of advanced HCC patients who received sorafenib treatment but also with expression of PXR’s downstream genes, cyp3a4 and/or mdr-1. Results from luciferase and real-time polymerase chain reaction (qPCR) showed that TPX2 leads to enhancement of the transcription factor activation of PXR. Protein–protein interactions between PXR and TPX2 were identified using co-immunoprecipitation. Mechanically, overexpression of TPX2 led to enhancement of PXR recruitment to its downstream gene cyp3a4’s promoter region (the PXRE region) or enhancer region (the XREM region). Treatment of HCC cells with paclitaxel, a microtubule promoter, led to enhancement of the effects of TPX2, whereas vincristine, a microtubule depolymerizing agent caused a decrease in TPX2-associated effects. TPX2 was found to cause acceleration of the metabolism or clearance of sorafenib, a typical tyrosine kinase inhibitor (TKI) in HCC cells and in turn led to the resistance to sorafenib by HCC cells. By establishing novel actions of TXP2 on PXR in HCC cells, the results indicate that TPX2 could be considered a promising therapeutic target to enhance HCC cells sensitivity to antitumor drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.