Large-scale genotyping plays an important role in genetic association studies. It has provided new opportunities for gene discovery, especially when combined with high-throughput sequencing technologies. Here, we report an efficient solution for large-scale genotyping. We call it specific-locus amplified fragment sequencing (SLAF-seq). SLAF-seq technology has several distinguishing characteristics: i) deep sequencing to ensure genotyping accuracy; ii) reduced representation strategy to reduce sequencing costs; iii) pre-designed reduced representation scheme to optimize marker efficiency; and iv) double barcode system for large populations. In this study, we tested the efficiency of SLAF-seq on rice and soybean data. Both sets of results showed strong consistency between predicted and practical SLAFs and considerable genotyping accuracy. We also report the highest density genetic map yet created for any organism without a reference genome sequence, common carp in this case, using SLAF-seq data. We detected 50,530 high-quality SLAFs with 13,291 SNPs genotyped in 211 individual carp. The genetic map contained 5,885 markers with 0.68 cM intervals on average. A comparative genomics study between common carp genetic map and zebrafish genome sequence map showed high-quality SLAF-seq genotyping results. SLAF-seq provides a high-resolution strategy for large-scale genotyping and can be generally applicable to various species and populations.
Ultrathin single crystal Au nanowires with diameter of approximately 1.6 nm and length of few micrometers were synthesized with high yield by simply mixing HAuCl 4 and oleylamine at room temperature. High resolution transmission electron microscopy studies revealed that all of these nanowires are single crystalline and grew along the [111] direction. The valency evolution of the gold species during the synthesis was studied by X-ray photoelectron spectroscopy, which showed a clear Au (3+) --> Au (+) --> Au stepwise reduction at different reaction stages. Small angle X-ray scattering and small-angle X-ray diffraction suggest mesostructure formation upon HAuCl 4 and oleylamine mixing. The slow in situ reduction of this mesostructure leads to the formation of ultrathin nanowires in solution. This novel nanowire growth mechanism relies on cooperative interaction, organization, and reaction between inorganic precursor salts and oleylamine.
Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. On the basis of atomic level structural imaging, elemental mapping of the pristine and cycled samples, and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions toward the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m → I41 → Spinel. For the first time, it is found that the surface facet terminated with pure cation/anion is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long-standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for design of cathode materials with both high capacity and voltage stability during cycling.
Nanolayers of Al2O3 and TiO2 coatings were applied to lithium‐ and manganese‐rich cathode powder Li1.2Ni0.13Mn0.54Co0.13O2 using an atomic layer deposition (ALD) method. The ALD coatings exhibited different surface morphologies; the Al2O3 surface film appeared to be uniform and conformal, while the TiO2 layers appeared as particulates across the material surface. In a Li‐cell, the Al2O3 surface film was stable during repeated charge and discharge, and this improved the cell cycling stability, despite a high surface impedance. The TiO2 layer was found to be more reactive with Li and formed a LixTiO2 interface, which led to a slight increase in cell capacity. However, the repetitive insertion/extraction process for the Li+ ions caused erosion of the surface protective TiO2 film, which led to degradation in cell performance, particularly at high temperature. For cells comprised of the coated Li1.2Ni0.13Mn0.54Co0.13O2 and an anode of meso‐carbon‐micro‐beads (MCMB), the cycling stability introduced by ALD was not enough to overcome the electrochemical instability of MCMB graphite. Therefore, protection of the cathode materials by ALD Al2O3 or TiO2 can address some of the capacity fading issues related to the Li‐rich cathode at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.