microRNAs could be mechanosensitive and emerge as critical posttranscriptional regulators in the bone-remodeling process. During orthodontic tooth movement (OTM), the application of mechanical force induces alveolar bone remodeling, but whether microRNAs respond to orthodontic force and contribute to OTM is unknown. microRNA-21 (miR-21) has been previously reported in vitro to mediate stretch-induced osteogenic differentiation of periodontal ligament stem cells and support osteoclast differentiation. In this study, the authors show that miR-21 responded to orthodontic force in periodontal tissue in a dose- and time-dependent manner and regulated the osteogenesis of human periodontal ligament stem cells following OTM. Using mmu-miR-21-deficient (miR-21) mice, the authors discovered that mmu-miR-21 deficiency inhibited OTM and prevented force-induced maxillary bone loss. The authors found that miR-21 mice showed a normal skeletal phenotype in development and a similar alveolar bone formation rate to wild-type mice postnatally. During OTM, mmu-miR-21 regulated force-induced alveolar osteoblastogenesis in the tensile side, while no effects were detected in the compressive side. However, miR-21 mice showed inhibited alveolar osteoclastogenesis when compared with wild-type mice. During OTM, mmu-miR-21 deficiency blocked alveolar bone resorption in both the compressive and tensile sides. To dissect the mechanism by which miR-21 regulates alveolar bone remodeling, the authors screened the reported functional targets of miR-21 and found that periodontal expression of programmed cell death 4 ( Pdcd4) was inhibited following OTM. Furthermore, mmu-miR-21 deficiency removed the suppression of Pdcd4 at both the mRNA and protein levels in the periodontium, resulting in upregulation of the downstream effector C-fos. Further analysis of OTM under lipopolysaccharide-induced periodontal inflammation showed that mmu-miR-21 mediated lipopolysaccharide (LPS)-accelerated OTM and that mmu-miR-21 deficiency blocked lipopolysaccharide-induced maxillary bone loss. In summary, these findings reveal a previously unrecognized mechanism that a microRNA can modulate OTM and alveolar bone remodeling under both normal and inflammatory microenvironments in vivo.
The aim of the present study was to investigate the periodontitis-associated changes in the number, proliferation and differentiation potential of human periodontal ligament stem cells (PDLSCs). Cultures of human periodontal ligament cells (PDLCs) were established from healthy donors and donors with periodontitis. The numbers of stem cell were characterized using flow cytometry. PDLSCs were isolated from the PDLCs by immunomagnetic bead selection. Colony-forming abilities, osteogenic and adipogenic potential, gene expression of cementoblast phenotype, alkaline phosphatase activity and in vivo differentiation capacities were then evaluated. Periodontitis caused an increase in the proliferation of PDLSCs and a decrease in the commitment to the osteoblast lineage. This is reflected by changes in the expression of osteoblast markers. When transplanted into immunocompromised mice, PDLSCs from the healthy donors exhibited the capacity to produce cementum PDL-like structures, whereas, the inflammatory PDLSCs transplants predominantly formed connective tissues. In conclusion, the data from the present study suggest that periodontitis affects the proliferation and differentiation potential of human PDLSCs in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.