Exosomes, a specific subclass of the extracellular vesicles secreted by most cell types, play an important role in cell–cell communication by transporting diverse content including protein, mRNA, miRNA, and DNA. This cargo is closely associated with the pathogenesis of most human malignancies. Therefore, it is becoming an urgent demand to be able to isolate exosomes in a simple, efficient, and economical way for scientific research and clinical diagnosis. Here, several conventional and novel nano‐based techniques of exosome isolation and characterization are summarized, and the advantages and disadvantages among them are compared, with the hope that researchers will be provided with an overview in this field to detect and isolate exosomes in a suitable manner, matching the subsequent experiments.
Many filamentous fungi produce only conidia for dispersal and survival in vitro or in vivo. Here, we show that the developmental regulator WetA and the velvet protein VosA are not only required for conidial maturation but indispensable for conidiation in Beauveria bassiana, a filamentous entomopathogen. Deletion of wetA or vosA resulted in more than 90 % transcriptional depression of brlA and abaA, two activator genes in the central developmental pathway, during the critical period of conidiophore development and conidiation. Consequently, ΔwetA and ΔvosA strains lost 98 % in and 88 % of their conidiation capacities under optimal culture conditions, respectively. The conidia of ΔwetA showed more defective features than those of ΔvosA, including smaller size, lesser density, lower hydrophobicity, and impaired cell walls although intracellular trehalose content decreased more in the aging culture of ΔvosA than of ΔwetA. As a result, conidial sensitivity to cell wall perturbation was elevated in ΔwetA but unaffected in ΔvosA, which produced conidia more sensitive to the oxidant menadione and the wet-heat stress at 45 °C. Both deletion mutants showed similar defects in conidial tolerance to high osmolarity or UV-B irradiation but no change in conidial sensitivity to the other oxidant H2O2 or the fungicide carbendazim. Moreover, ΔwetA lost more virulence to Galleria mellonella larvae than ΔvosA. All these phenotypical changes were restored by either wetA or vosA complementation. Taken together, WetA and VosA are indispensable for asexual development and contribute differentially to conidial quality and hence the biological control potential of B. bassiana against insect pests.
Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials.
Gold (Au) has been considered catalytically inert for decades, but recent reports have described the ability of Au nanoparticles to catalyze H 2 O 2 decomposition in the Haber−Weiss cycle. Herein, the design and demonstration of a flow-through electro-Fenton system based on an electrochemical carbon nanotube (CNT) filter functionalized with atomically precise Au nanoclusters (AuNCs) is described. The functionality of the device was then tested for its ability to catalyze antibiotic tetracycline degradation. In the functional filters, the Au core of AuNCs served as a high-performance Fenton catalyst; while the AuNCs ligand shells enabled CNT dispersion in aqueous solution for easy processing. The hybrid filter enabled in situ H 2 O 2 production and catalyzed the subsequent H 2 O 2 decomposition to HO•. The catalytic function of AuNCs lies in their ability to undergo redox cycling of Au + /Au 0 under an electric field. The atomically precise AuNCs catalysts demonstrated superior catalytic activity to larger nanoparticles; while the flow-through design provided convection-enhanced mass transport, which yielded a superior performance compared to a conventional batch reactor. The adsorption behavior and decomposition pathway of H 2 O 2 on the filter surfaces were simulated by density functional theory calculations. The research outcomes provided atomic-level mechanistic insights into the Aumediated Fenton reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.