Inflammation and oxidative stress are implicated in the pathogenesis of acute viral myocarditis (AVM). Ulinastantin (UTI), an inhibitor of serine protease widely used in treatment of pancreatitis and various inflammatory disorders, displays cardioprotective properties in experimental animals. Although the specific mechanism through which UTI regulates cardiac function is not well explored, evidence suggests that UTI might activate nuclear factor E2-related factor 2 (Nrf2) signaling. In this study, we investigated the role of Nrf2 in mediating UTI's cardioprotection in a mouse model of AVM. We found that UTI is an activator of Nrf2 signaling. It markedly increased Nrf2 nuclear translocation, Nrf2 transcription capacity, and the downstream protein expression. In addition, UTI possessed strong protective functions in coxsackievirus B3 (CVB3)-induced AVM. UTI treatment effectively reduced the cardiac damage, decreased the expression of inflammatory cytokines, and balanced oxidative stress via improving the activity of anti-oxidant and detoxifying enzymes. Even more impressively, UTI achieved its cardioprotective activities in an Nrf2-dependent manner. Taken together, our study has identified a novel pathway through which UTI exerts its cardioprotective functions and provides a molecular basis for UTI potential applications in the treatment of AVM and other inflammatory disorders.
Background
Previous studies have reported that six transmembrane protein of prostate 2 (STAMP2) attenuates metabolic inflammation and insulin resistance in diabetes mellitus. However, the role of STAMP2 in the diabetic heart is still unclear.
Methods
A diabetic rat cardiomyopathy model was established via intraperitoneal STZ injection. STAMP2 was overexpressed in the treatment group using adeno-associated virus. Rat heart diastolic function was measured using echocardiography and a left ventricular catheter, and cardiac interstitial fibrosis was detected by immunohistochemistry and histological staining. Insulin sensitivity and NF-κB expression were shown by Western blotting. NMRAL1 distribution was illustrated by immunofluorescence.
Results
STAMP2 expression in the diabetic rat heart was reduced, and exogenous overexpression of STAMP2 improved glucose tolerance and insulin sensitivity and alleviated diastolic dysfunction and myocardial fibrosis. Furthermore, we found that NF-κB signaling is activated in the diabetic heart and that exogenous overexpression of STAMP2 promotes NMRAL1 translocation from the cytoplasm to the nucleus and inhibits p65 phosphorylation.
Conclusion
STAMP2 attenuates cardiac dysfunction and insulin resistance in diabetic cardiomyopathy, likely by promoting NMRAL1 retranslocation and NF-κB signaling inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.