Summary ‘Dated‐tip’ methods of molecular dating use DNA sequences sampled at different times, to estimate the age of their most recent common ancestor. Several tests of ‘temporal signal’ are available to determine whether data sets are suitable for such analysis. However, it remains unclear whether these tests are reliable.We investigate the performance of several tests of temporal signal, including some recently suggested modifications. We use simulated data (where the true evolutionary history is known), and whole genomes of methicillin‐resistant Staphylococcus aureus (to show how particular problems arise with real‐world data sets).We show that all of the standard tests of temporal signal are seriously misleading for data where temporal and genetic structures are confounded (i.e. where closely related sequences are more likely to have been sampled at similar times). This is not an artefact of genetic structure or tree shape per se, and can arise even when sequences have measurably evolved during the sampling period. More positively, we show that a ‘clustered permutation’ approach introduced by Duchêne et al. (Molecular Biology and Evolution, 32, 2015, 1895) can successfully correct for this artefact in all cases and introduce techniques for implementing this method with real data sets.The confounding of temporal and genetic structures may be difficult to avoid in practice, particularly for outbreaks of infectious disease, or when using ancient DNA. Therefore, we recommend the use of ‘clustered permutation’ for all analyses. The failure of the standard tests may explain why different methods of dating pathogen origins have reached such wildly different conclusions.
Parasitoid wasps inject venom containing complex bioactive compounds to regulate the immune response and development of host arthropods and sometime paralyze host arthropods. Although extensive studies have been conducted on the identification of venom proteins in larval parasitoids, relatively few studies have examined the pupal parasitoids. In our current study, a combination of transcriptomic and proteomic methods was used to identify 64 putative venom proteins from Pachycrepoideus vindemmiae, an ectoparasitoid of Drosophila. Expression analysis revealed that 20 tested venom proteins have 419-fold higher mean expression in the venom apparatus than in other wasp tissues, indicating their specialization to venom. Comparisons of venom proteins from P. vindemmiae and other five species spanning three parasitoid families detected a core set of "ancient" orthologs in Pteromalidae. Thirty-five venom proteins of P. vindemmiae were assigned to the orthologous groups by reciprocal best matches with venoms of other pteromalids, while the remaining 29 were not. Of the 35 categories, twenty-seven have orthologous relationships with Nasonia vitripennis venom proteins and 25 with venoms of Pteromalus puparum. More distant relationships detected that five and two venom proteins of P. vindemmiae are orthologous with venoms of two Figitidae parasitoids and a Braconidae representative, respectively. Moreover, twenty-two venoms unique to P. vindemmiae were also detected, indicating considerable interspecific variation of venom proteins in parasitoids. Phylogenetic reconstruction based on a set of single-copy genes clustered P. vindemmiae with P. puparum, N. vitripennis, and other members of the family Pteromalidae. These findings provide strong evidence that P. vindemmiae venom proteins are well positioned for future functional and evolutionary studies.
Hepatitis B virus is a kind of DNA virus which can cause serious epidemic disease. The analysis and detection of sequence-specific DNA have great significance in forensic analysis, early-stage identification and treatment of genetic disorders. Chemiluminescent detection of DNA has been applied in many fields, such as biological technology and molecular biology, due to its simple operation and high sensitivity. On the other hand, owing to possessing easy magnetic separation and large surface properties, magnetic nanoparticles have also been employed as special carriers to immobilize biomolecules. In this paper, the magnetic nanoparticles are prepared by soft-template method with uniform shape and good dispersion. Then a detection method of hepatitis B virus DNA is established taking advantages of both chemilumiescence with the system of alkaline phosphatase catalyzing 3-(2 -spiroadamantane)-4-methoxy -4-(3 -phosphoryloxy) phenyl-1, 2-dioxetane and magnetic nanoparticles. The optimization of conditions affecting the hybridization reaction and the chemilumiescence detection are also investigated to promise a high sensitivity.
To date, genomic analyses in amoebozoans have been mostly limited to model organisms or medically important lineages. Consequently, the vast diversity of Amoebozoa genomes remain unexplored. A draft genome of Cochliopodium minus, an amoeba characterized by extensive cellular and nuclear fusions, is presented. C. minus has been a subject of recent investigation for its unusual sexual behavior. Cochliopodium’s sexual activity occurs during vegetative stage making it an ideal model for studying sexual development, which is sorely lacking in the group. Here we generate a C. minus draft genome assembly. From this genome, we detect a substantial number of lateral gene transfer (LGT) instances from bacteria (15%), archaea (0.9%) and viruses (0.7%) the majority of which are detected in our transcriptome data. We identify the complete meiosis toolkit genes in the C. minus genome, as well as the absence of several key genes involved in plasmogamy and karyogamy. Comparative genomics of amoebozoans reveals variation in sexual mechanism exist in the group. Similar to complex eukaryotes, C. minus (some amoebae) possesses Tyrosine kinases and duplicate copies of SPO11. We report a first example of alternative splicing in a key meiosis gene and draw important insights on molecular mechanism of sex in C. minus using genomic and transcriptomic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.