Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions.
Staphylococcus aureus, a commonly found pathogen, can cause food poisoning and infections. Thus, it is necessary to develop analytical methods for the rapid screening of S. aureus in suspicious samples. Magnetic nanoparticles (MNPs) are widely used as affinity probes to selectively enrich target species from complex samples because of their high specific surface area and magnetic properties. The MNP surface should be functionalized to have the capability to target specific species. We herein propose a straightforward method to functionalize aluminum oxide-coated iron oxide (Fe3O4@Al2O3) MNPs with the peptide HHHHHHDEEGLFVD (D). The peptide D was comprised of three domains: polyhistidine (H6) used as the linker, DEE added as the spacer, and GLFVD used for targeting S. aureus. D was immobilized on the surface of Fe3O4@Al2O3 MNPs through H6-Al chelation. Our results showed that the D-functionalized Fe3O4@Al2O3 MNPs (D-Fe3O4 MNPs) possess the capability to target S. aureus. The selective trapping experiments were conducted under microwave-heating for only 60 s, and sufficient bacterial cells were trapped by the MNPs to be identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We demonstrated that the D-Fe3O4@Al2O3 MNPs combined with MALDI-MS can be used to rapidly characterize trace amounts of S. aureus in complex juice and egg samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.