Host immune response induced by foreign bone biomaterials plays an important role in determining their fate after implantation. Hence, it is well worth designing advanced bone substitute materials with beneficial immunomodulatory properties to modulate the host-material interactions. Bioactive glasses (BG), with excellent osteoconductivity and osteoinductivity, are regarded as important biomaterials in the field of bone regeneration. In order to explore a novel BG-based osteoimmunomodulatory implant with the capacity of potentially enhancing bone regeneration, it is a possible way to regulate the local immune microenvironment through manipulating macrophage polarization. In this study, strontium-substituted submicrometer bioactive glass (Sr-SBG) was prepared as an osteoimmunomodulatory bone repair material. To investigate whether the incorporation of Sr into SBG could synergistically improve osteogenesis by altering macrophage response, we systematically evaluated the interaction between Sr-SBG and macrophage during the process of bone regeneration by in vitro biological evaluation and in vivo histological assessment. It was found that the Sr-SBG modulates proper inflammatory status, leading to enhanced osteogenesis of mouse mesenchymal stem cells (mMSCs) and suppressed osteoclastogenesis of RAW 264.7 cells compared to SBG without strontium substitution. In vivo study confirmed that Sr-SBG initiated a less severe immune response and had an improved effect on bone regeneration than SBG, which corresponded with the in vitro evaluation. In conclusion, these findings suggested that Sr-SBG could be a promising immunomodulatory bone repair material designed for improved bone regeneration.
Nanofibrous scaffolds that offer proper microenvironmental cues to promote the healing process are highly desirable for patients with chronic wounds. Although studies have shown that fiber organization regulates cell behaviors in vitro, little is known about its effects on the wound healing process in vivo. Most of the nanofibrous scaffolds currently used in skin repair are randomly oriented. Herein, inspired by the basketweave-like pattern of collagen fibrils in native skin, we fabricated biomimetic nanofibrous scaffolds with crossed fiber organization via electrospinning. The regulation of crossed nanofibrous scaffolds on fibroblasts was compared with that of aligned and random nanofibrous scaffolds. Unexpectedly, crossed nanofibrous scaffolds induced different cellular responses in fibroblasts, including differences in cellular morphology, migration and wound healing related gene expression, in comparison to either aligned or random nanofibrous scaffolds. More importantly, the regulation of nanofibrous scaffolds with different fiber organizations on wound repair was systematically investigated in diabetic rats. While the healing processes were enhanced by all nanofibrous scaffolds, wounds treated with crossed nanofibrous scaffolds achieved the best healing outcome, which was evidenced by the resolution of inflammation, the accelerated migration of fibroblasts and keratinocytes, and the promotion of angiogenesis. These findings helped reveal the role of fiber organization in regulating the wound healing process in vivo and suggest the potential utility of biomimetic crossed nanofibrous scaffolds for the repair of chronic wounds.
BackgroundTo evaluate the distribution of biometric parameters and corneal astigmatism using the IOLMaster device before phacoemulsification in cataract patients in Central China.MethodsConsecutive cataract patients were recruited at the Central Hospital of Wuhan between January 2015 and June 2016. Ocular axial length (AL), keratometry values, anterior chamber depth (ACD) and horizontal corneal diameter (white to white [WTW]) of each cataract-affected eye were measured with the IOLMaster device.ResultsThe study evaluated 3209 eyes of 2821 cataract patients. The mean AL, ACD, and WTW were 24.38 ± 2.47 mm, 3.15 ± 0.48 mm, and 11.63 ± 0.43 mm, respectively. Corneal astigmatism of 0.51–1.00 diopters (D) was the most common range of values (34.96%). A total of 10.56% patients exhibited a corneal astigmatism greater than 2.0 D. The flat and steep keratometry values gradually increased with age. The mean ACD and WTW showed increasing trends as the AL increased (P < 0.001). When the AL was shorter than 26.0 mm, the keratometry decreased as AL increased. The against-the-rule (ATR) astigmatism proportion increased with age and the with-the-rule (WTR) astigmatism proportion decreased with age.ConclusionsThe profile of ocular biometric data and corneal astigmatism may help ophthalmologists improve their surgical procedures and make an appropriate IOL choice to gain a high quality of postoperative vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.