The effectiveness of commercial bone adhesives is known to be hampered by the weak efficacy of cell ingrowth. The strategy of macropore‐forming, especially bioactive macropores, holds considerable promise to circumvent this problem, thereby promoting fracture healing. Herein, a class of bioactive glass‐involved macropore‐embedded bone adhesives is developed, which is capable of facilitating the migration of bone‐derived mesenchymal stromal cells into the adhesive layer and differentiation into osteocytes. The integration of bioactive glass‐particle‐encapsulated porogens in the bone adhesives is key to this approach. A robust instant bonding on the bone adhesive and a high efficiency of bone regeneration on a mouse skull are observed, both of which are vital for clinical applications and personalized surgical procedures. This work represents a general strategy to design biomaterials with high cell‐ingrowth efficacy.
PWS ECs are differentiation-impaired, late-stage endothelial progenitor cells with a specific phenotype of CD133 /CD166 /EphB1 /EfnB2 , which form immature venule-like pathoanatomical vasculatures. The disruption of normal EC-EC interactions by coexistence of EphB1 and EfnB2 contributes to progressive dilatation of PWS vasculatures.
BackgroundThe incidence of intertrochanteric hip fracture is expected to increase as the global population ages. It is one of the most important causes of mortality and morbidities in the geriatric population. The incidence of reverse oblique and transverse intertrochanteric (AO/OTA 31-A3) fractures is relatively low; however, the incidence of implant failure in AO/OTA 31-A3 fractures is relatively high compared with that in AO/OTA 31-A1 and A2 fractures. To date, the risk factors for implant failure in AO/OTA 31-A3 fractures treated with proximal femoral nail antirotation (PFNA) have remained ambiguous. The purpose of this study was to identify the predictive factors of implant failure in AO/OTA 31-A3 fractures treated with PFNA.MethodsThe data of all patients who underwent surgery for trochanteric fractures at our institution between January 2006 and February 2018 were retrospectively reviewed. All AO/OTA 31-A3 fractures treated with PFNA were included. Logistic regression analysis of potential predictors of implant failure was performed. Potential predictors included age, sex, body mass index, fracture type, reduction method, status of posteromedial support and lateral femoral wall, reduction quality, tip-apex distance and position of the helical blade in the femoral head.ResultsOne hundred four (9.3%) patients with AO/OTA 31-A3 fractures were identified. Forty-five patients with AO/OTA 31-A3 fractures treated with PFNA were suitable for our study. Overall, implant failure occurred in six (13.3%) of forty-five patients. Multivariate analysis identified poor reduction quality (OR, 28.70; 95% CI, 1.91–431.88; p = 0.015) and loss of posteromedial support (OR, 18.98; 95% CI, 1.40–257.08; p = 0.027) as factors associated with implant failure.ConclusionsPoor reduction quality and loss of posteromedial support are predictors of implant failure in reverse oblique and transverse intertrochanteric fractures treated with PFNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.